





# Mid-infrared prediction of cheese yield from milk and its genetic variability in first-parity cows

F.G. Colinet<sup>1</sup>, T. Troch<sup>1</sup>, S. Vanden Bossche<sup>1</sup>, H. Soyeurt<sup>1</sup>,
O. Abbas<sup>2</sup>, V. Baeten<sup>2</sup>, F. Dehareng<sup>2</sup>, E. Froidmont<sup>2</sup>,
G. Sinnaeve<sup>2</sup>, P. Dardenne<sup>2</sup>, M. Sindic<sup>1</sup>, and N. Gengler<sup>1</sup>

<sup>1</sup> University of Liège, Gembloux Agro-Bio Tech, Belgium <sup>2</sup> Walloon Agricultural Research Center, Belgium



### Introduction

- Cheese manufacture and yield
  - Economical importance
  - > Empirical and theoritical formula for cheese yield (CY)
    - Generally based on some factors:
      - ✓ Milk fat content
      - ✓ Milk protein content
      - ✓ Milk casein content
      - ✓ Moisture
      - ✓ Salt

. . . .



#### Introduction

#### □ Cheese yield

- Influence of animal selection on milk component
   also on milk processability
- Interest for determining CY at large scale and for increasing CY



# **Objectives**

- □ To determine CY of fresh milk at large scale
  - Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
  - Fast method using small quantity of milk
  - > Adapted to Walloon dairy cattle (multi-breed)
  - > MIR spectrometry already implemented in milk labs



# **Objectives**

- □ To determine CY of fresh milk at large scale
  - Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
  - Fast method using small quantity of milk
  - > Adapted to Walloon dairy cattle (multi-breed)
  - > MIR spectrometry already implemented in milk labs

#### MIR chemometric method for ILCYf prediction



# **Objectives**

- To determine CY of fresh milk at large scale
  - Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
  - Fast method using small quantity of milk
  - > Adapted to Walloon dairy cattle (multi-breed)
  - > MIR spectrometry already implemented in milk labs

#### MIR chemometric method for ILCYf prediction

- To study the genetic variability of predicted ILCYf
  - First-parity Holstein cows in Wallonia (Belgium)



- Sampling
  - > Wallonia
  - > Spectra and reference data variability: several criteria
    - Milk sampling: individual or bulk milk
    - Breed: Dual Purpose Belgian Blue, Holstein, Red-Holstein, Montbeliarde and Jersey
    - Time of sampling: morning milking, evening milking mix of 50% morning & 50% evening milk samples





- □ Analysis
  - Milk lab (Comité du Lait, Battice, Belgium)
    - ✤ FT-MIR
  - Fresh Individual Laboratory Cheese Yield (ILCYf)
    - ✤ g coagulum / 100 g milk
    - ✤ Determined according to Hurtaud *et al.* 1995

(Ann. Zootech. 44, 385-398)

- Intra-assay variation coefficient = 3.2%
- Sample analyzed in duplicate



- Methods
  - Modified Partial Least Square regressions

(Shenk & Westerhaux, 1991)

- > Use of a first derivative pretreatment
  - To correct the baseline drift
- Detection of spectral outliers
  - Based on Mahalanobis distance
- > Use of a repeatability file
  - Spectra from the same samples analyzed on different spectrometers



- Methods
  - Internal cross-validation (50 groups)
    - To determine the number of factors
    - To assess the robustness of equation
  - > T-outlier test
    - Compared observed and predicted values
    - Samples with T-outlier value > 2.5 were discarded
    - Maximum 5 tests performed
    - → 22 additional samples discarded



#### Calibration equation

Statistical parameters of final dataset

| Parameters              |                                        |
|-------------------------|----------------------------------------|
| Mean                    | 26.8 g/100g                            |
| Standard deviation (SD) | 6.5 g/100g                             |
| Range                   | <b>34.1 g/100g</b> (from 13.8 to 47.9) |

#### Calibration

| Parameters                                                                 |            |  |
|----------------------------------------------------------------------------|------------|--|
| Standard error of calibration (SE <sub>c</sub> )                           | 2.6 g/100g |  |
| Calibration coefficient<br>of determination (R <sup>2</sup> <sub>c</sub> ) | 0.83       |  |



#### Calibration equation

Statistical parameters to assess the accuracy

| Parameters                                                                       |            |
|----------------------------------------------------------------------------------|------------|
| Standard error<br>of cross-validation (SE <sub>cv</sub> )                        | 2.8 g/100g |
| Cross-validation coefficient<br>of determination (R <sup>2</sup> <sub>cv</sub> ) | 0.81       |
| RPD = SD / SE <sub>cv</sub>                                                      | 2.27       |
| RER = Range / SE <sub>cv</sub>                                                   | 12.0       |



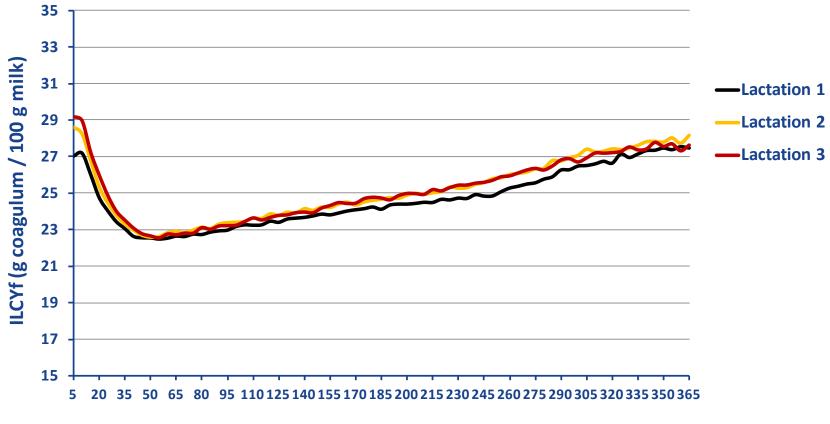
#### Calibration equation

Statistical parameters to assess the accuracy

| Parameters                                                                       |            |
|----------------------------------------------------------------------------------|------------|
| Standard error<br>of cross-validation (SE <sub>cv</sub> )                        | 2.8 g/100g |
| Cross-validation coefficient<br>of determination (R <sup>2</sup> <sub>cv</sub> ) | 0.81       |
| RPD = SD / SE <sub>cv</sub>                                                      | 2.27 > 2   |
| RER = Range / SE <sub>cv</sub>                                                   | 12.0 > 10  |

Calibration equation: good practical utility




## **Result: Prediction**

- Data editing
  - Walloon MIR spectral database
    - ✤ > 2 500 000 spectra
    - Routinely collected since 2007 by milk recording
  - Outliers discarding
    - Based on Mahalanobis distance computing using 234 MIR spectra of the final calibration dataset as reference
      - ✓ Upper standardized Mahalanobis distance cut off : 3
    - Below 0.5 percentile and above 99.5 percentile

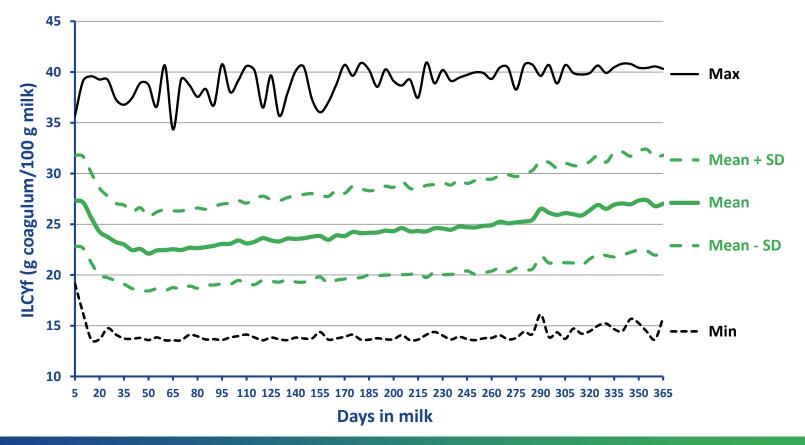


### **Result: Prediction**

□ Averaged MIR predicted ILCYf throughout first three lactations



**Days in milk** 




- Data editing
  - > After edits:
    - ✤ 7 870 first-parity Holstein cows from 101 herds
      - ✓ Cows with  $\ge$  4 predicted ILCYf and known parents
      - ✓ > 58 000 animals in extracted pedigree file
    - ✤ > 51 000 records for MIR predicted ILCYf



Data

- Average MIR predicted ILCYf = 24.2 g/100g (± 4.5 g/100g)
- > MIR predicted ILCYf throughout first lactation





□ Single-trait random regression animal test-day model

$$y = X\beta + Q(Zp + Za) + e$$



Single-trait random regression animal test-day model

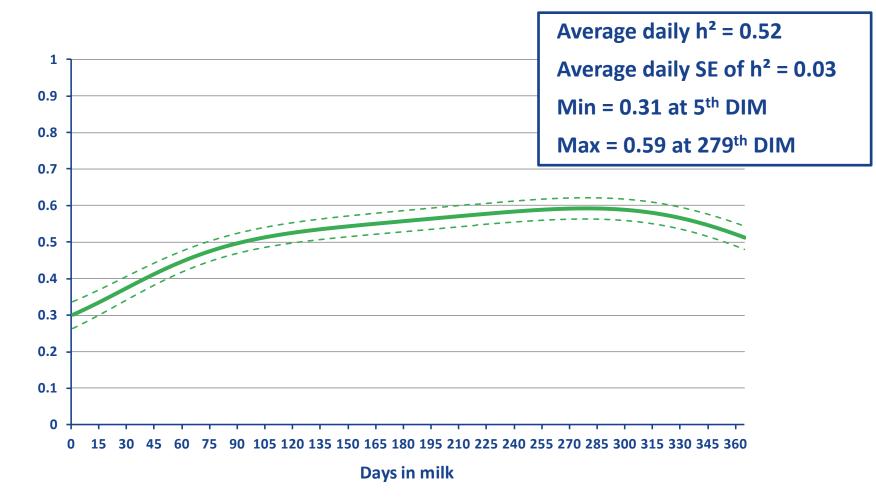
#### $y = X\beta + Q(Zp + Za) + e$

- >  $\beta$  = fixed effects
  - Herd x test day
  - Lactation stage (classes of 5 days)
  - Gestation stage
  - ✤ Age at calving x season of calving x lactation stage



Single-trait random regression animal test-day model

#### $y = X\beta + Q(Zp + Za) + e$


- p = permanent environment random effect
- a = additive genetic random effect
  - Regression curves modelled with 2<sup>nd</sup> order Legendre polynomial

#### Variances components estimated by AIREMLF90 (Misztal, 2012)



## **ILCYf heritability**

#### Daily heritability throughout first lactation





## Conclusions

- MIR chemometric methods
  - Developed equation
    - ✤ R<sup>2</sup><sub>cv</sub> = 0.81
    - ✤ RPD > 2 and RER > 10
  - ➔ Good practical utility
  - Results are promising for the prediction of fresh Individual Laboratory Cheese Yield from MIR spectrum
- Genetic variability study
  - Moderate daily heritability
  - Potential of selection for ILCYf



#### Next steps

- Improvement with new samples
- □ Study of phenotypic and genetic correlations of ILCYf with
  - milk production traits
  - other milk components
  - > milk technological properties
- □ Feasibility/opportunity to develop a genetic evaluation ?



# Thank you for your attention











Z

#### Acknowledgments for financial support

Service Public de Wallonie SPW – DGO3 and
 European Commission (ERDF) through projects
 D31-1255/S1 ProFARMilk and INTERREG IVA BlueSel

#### Acknowledgments

- CECI for computational resources
- Milk Committee of Battice
- Walloon Breeding Association (AWE asbl)
- Walloon dairy breeders



#### Corresponding author's e-mail: Frederic.Colinet@ulg.ac.be