

Genetic parameters for energy efficiency traits in Nordic Red dairy cattle

A.-E. Liinamo, P. Mäntysaari, M. Lidauer and E. Mäntysaari

Background

- Feed efficiency is the one of the last "major" traits that is still not included in dairy cattle breeding programs
- Lack of information on
 - Trait description: what exactly IS feed efficiency?
 - Practical problems: how to measure it?
 - Genetics: how heritable is it?
 - Complexity: how would it affect production, health and other traits if feed efficiency would be included as a breeding goal?

Aim of the study

- Genetic parameters for energy efficiency: residual energy intake and energy conversion efficiency
- Genetic relationships of energy efficiency with milk production, body weight, body condition and energy balance
- Nordic Red dairy cattle

Feed efficiency data

- MTT Agrifood Research Finland Rehtijärvi and Minkiö farms
 - 1998-2001 and 2006-2012
- ASMO Nordic Red dairy cattle MOET nucleus heifers
 - 1st lactation test period
 - 40 animals in test at the same time
- 400 animals from 146 sires
 - lactation weeks 2 30
 - no feed intake when in pasture

Energy efficiency definitions

Weekly averages lwk 2 - 30 for:

- Residual energy intake (REI)
 - Energy intake (need for maintenance + milk + energy from BW gain or loss)
 - Requirements estimated from data, REI = cow-wise mean of prediction equation residuals
 - *MJ ME/d*
- Energy conversion efficiency (ECE)
 - Milk energy output/energy intake
 - Calculated from data
 - kg ECM/MJ ME intake

Other studied traits

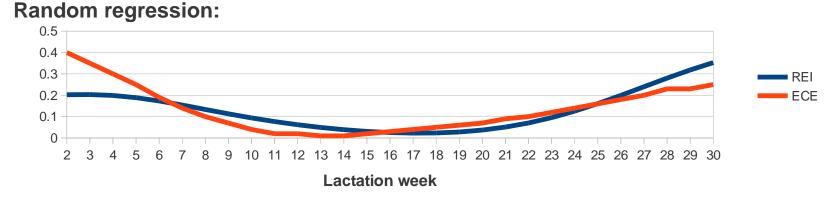
Weekly averages lwk 2 - 30 for:

- Energy corrected milk (ECM) kg/d
- Dry matter intake (DMI) kg/d
- Body weight (BW) kg
- Body condition score (BCS) 1 to 5
- Energy balance (EB) MJ ME/d
 - Energy intake (need for maintenance + need for milk)
 - Calculated from official Finnish dairy feed requirements

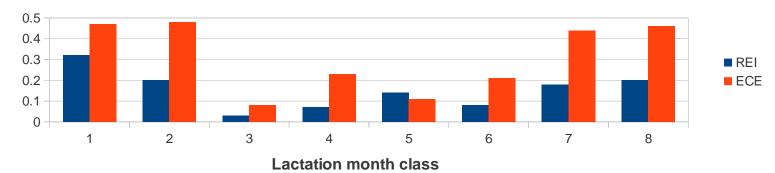
Analyses

• Random regression models

- Fixed effects: calving year-month, calving age
- Lactation stage correction Ali and Schaeffer 1987
- *pe* and *a* modelled with 2nd degree Legendre polynomials


Multitrait models

- Each lactation month treated as a separate trait (4-wk periods * 8)
- Fixed effects: calving age, year and season
- Random effects: a
- Both: REML with pedigree two generations back

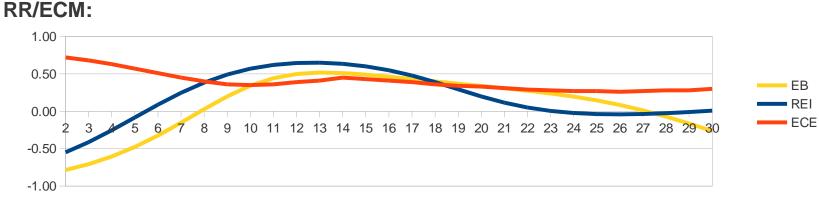


Heritabilities efficiency traits

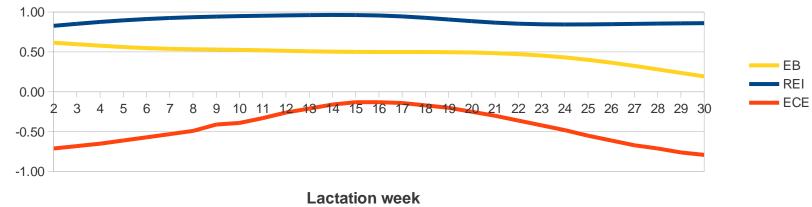
• Highest h² estimates in beginning and end of study period


Multitrait:

Genetic correlations within efficiency traits

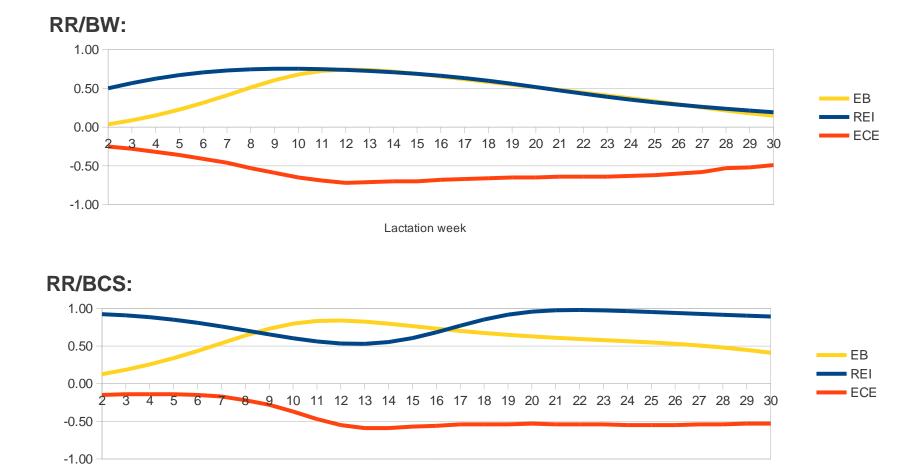

• At least 2 different efficiency periods during early to midlactation with partially different genetic mechanisms?

RR/correlation of lwk 20 with other weeks:



Genetic correlations efficiency vs. others

Lactation week


Conclusions

- Energy efficiency in dairy cows is moderately heritable
- Energy efficiency during early and mid- to late lactation probably has partially different genetic backgrounds
 - But: first 10 weeks after calving the most challenging period for modelling -> more info on body composition changes needed
- Trait definition still problematic
 - REI genetically similar to EB: correlated with ECM and BW
 - ECE easy to understand but strongly correlated to component traits: what is new?
 - Efficiency measures rely on prediction of energy requirements from predefined feeding norms -> biologically more relevant indicator traits?

Genetic correlations efficiency vs. others (2)

Lactation week

