

Investigating potential interactions between methane emission and rumen microbial profiles in Danish Holsteins

J. La ssen*, B. St-Pierre†, R. Smith†, A. D. G. Wright† & P. Løvenda hl*

^{*} Department of Molecular Biology and Genetics, Aarhus University, Denmark

† Department of Animal Sciences, University of Vermont, USA

Methane – two stories

Green house gas emission

Indicator of feed efficiency

The host controls some of the variation

- Changing rumen content between two cows (Weiner et al 2010: JDS)
- > Rumen pH reestablished over 24 hour period
- Bacterial community reestablish somewhat slower but gets close to original community within 60 days
- > Animal control and variation genetics?

Quantitative genetics

- > Precise measurements in large numbers (+10000)
- > Respiration chambers and fistulated cows is hardly the solution
- > A number of new approaches are being tested

Objective

Set up protocol and pipeline for large study on host methane
 x rumen microbial community interaction

> Investigate the interaction on relatively small scale data

Equipment for measuring methane in AMS

- 1. Sampling unit
- 2. Pump unit
- 3. Analyser FTIR (GASMET DX-4000, www.gasmet.fi)
- 4. computer + software

Good and bad

- > High capacity, non invasive approach
- > Potential for other gasses
- > Spot samples of biology
- > No control of breath
- Ongoing validation

Sampling rumen fluid for genetic analysis

- > High capacity
- > Invasive procedure
- No surgery or slaughter
- Samples not taken the same place in rumen from cow to cow
- > Limited saliva contamination

Da ta

- > 1 herd (~600 cows)
- > 50 Holstein
- > 1. lactation cows
- > Same TMR diet
- > Feed 8 times daily
- > Same 2 robots

Statistics pr day

Variable	Mean	SD	Min	Max
ECM	28,6	5,1	11,7	38,5
Weight	583	61	479	718
Methane I	498	43	412	543
CH4/I Milk	16,1	1,6	12,7	23,3

Handling rumen samples

- > On ice in farm
- > 5 x 1,5 ml samples in lab
- > Stored in -80 C
- > DNA extraction
- > 454 Sequencing of 16s RNA
- > MOTHUR bioinformatics tool
- > RDP Classifier

Bacterias

Means within cluster

	Cluster 1	Cluster 2
CH ₄ / I milk	15,1ª	17,9 ^b
LCH ₄	472ª	512ª
ECM	29,3ª	27,1ª
Weight	573ª	616ª
Days in milk	114ª	116ª

Next step

> Protozoa and archea will be analysed

Larger project

> 2000 cows will be phenotyped and genotyped (1000 before new year)

Take home message

- An area for collaboration between scientific communities: genetics, microbiology, physiology, nutrition, bioinformatics
- > Indication of host control of rumen microbial community
- > Indication of relation between clustering and methane emission
- > Ongoing work