

Nitrogen partitioning into faeces, urine and milk according to the feeding strategy of dairy cows

Cutullic E¹, Bannink A⁴, Carli J⁵, Crompton L⁶, Doreau M², Edouard N¹, Faverdin P¹ Jurjanz S³, Klop A⁴, Mills J⁶, Moorby J⁵, Noziere P², Reynolds C⁶, Van Vuuren A⁴, Peyraud JL¹

- ¹ INRA-Agrocampus Ouest UMR1348, Rennes ² INRA UMRH1213, Theix
 - ³ Université de Lorraine-INRA, Nancy
 - ⁴ Wageningen UR Livestock Research, Lelystad
- **5** IBERS, Aberystwyth ⁶ University of Reading, Earley Gate

Why to predict nitrogen partitioning ?

- faecal N is mainly organic
 - \rightarrow slow mineralisation rate
- urinary N is mainly urea-N

 \rightarrow rapid volatilisation potential (NH₃, N₂O)

reviews Peyraud et al. 1995, Dijkstra et al. 2011

N flows at the animal scale

Spek et al. 2013 meta-analysis (>68 treat. EU trials) Dijkstra et al. 2013 Diagram adapted from Lemosquet 2013

Main drivers of N flows are well known

But how much are these increases sensitive to the underlying diet type ?

A large data set across 7 teams with various diet types

109 trials, 511 cows, 1737 complete N balances (intake, faeces, urine, milk)

→ 1151 with known diet type

G fresh grass	n = 206
GS grass silage	n = 298
MS maize silage	n = 319
others	

> 701 with known diet composition

% of each type of feed degradable CP content

Average daily N flows were consistent with previous studies

A large variability

Urine N excretion has a twice greater variability, urine N can represent from 20 to 55% of N intake

The faecal N excretion mainly depends on DM intake

DM intake (kg/d)

+ 9 gN / kg DMI (corrected for team effect) partial R²_{DMI} = 52% n = 1737

in the average of reported values +7 to +10 gN / kg DMI Peyraud et al. 1995, Spek et al. 2013,

Huhtanen et al. 2008

Fecal N excretion

The faecal N excretion also depends on the type of diet

DM intake (kg/d)

The faecal N excretion depends on DMI of main diet components

The DMI effect can be expressed as the sum of each feed DMI effect

with DMI in kg/d (corrected for team effect, n=1118, R²= 75%, r.s.e. = 19)

The urine N excretion mainly depends on feed CP content

Urine N composition also matters

N excreted in urin

non-urea N fraction (purine deriv., hippuric acid, creatine, creatinine) has a slower decomposition rate than urea and will less contribute to gaseous losses reviewed by Dijkstra et al. 2013

non-urea N slightly increases with total urinary N excretion

Urine N composition also matters

N excreted in urin

Urine N composition also matters

Is it worth to complicate?

- classical relationships held Castillo et al. 2000, Spek et al. 2013
- the faecal N on DM intake ratio depends on diet type
- the urine N composition differs across diet types
- further work is required to investigate the consequences of diet type on the various N fractions both in urine and in faeces, and thus to predict the consequences on decomposition rates

Acknowledgements

to all the people who shared their data for this collective work

<u>AND</u> to all the people who « help data to survive », by filling in and managing databases, by keeping floppy disks, lotus files, old reports and paper sheets...

ROBUST HARD DISK DRIVE

This presentation has been carried out with financial support from the Commission of the European Communities, FP7, KBB-2007-1.

It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

> Innovative and practical management approaches to reduce nitrogen excretion by ruminants

REDNEX

