

Effect of maturity and conservation of grass/clover on digestibility and rumen pH in heifers

Anne-Katrine Skovsted Schulze (Koch) Peder Nørgaard Martin Riis Weisbjerg Malene Vesterager Byskov

64th EAAP meeting Nantes, France

What if high quality grass/clover forages are fed in vast amounts in feed rations for dairy cattle?

Rumen pH? Digestibility?

Objective

To assess rumen pH development and apparent digestibility in heifers fed spring-harvest grass/clover forages

digestibility and rumen pH

Forages and feeding

Grass/clover of primary growth

Early harvest (May 9, early veg. stage, 30% clover) Late harvest (May 25, veg. stage, 46% clover)

Silage: Prewilted (40% DM), chopped (19mm), baled, and wrapped Hay: prewilted in field (70% DM), barn dried, baled

Forages fed at 90% ad libitum level, no concentrate supplement

Forage nutrient composition

	Early harve	est (May 9)	Late harvest (May 25)		
Composition	Silage Hay		Silage	Нау	
DM, %	45	84	25	83	
CP. % of DM	19 17		16	13	
NDF, % of DM	31	43	41	50	
pdNDF, % of NDF	92	94	88	89	
k _d pdNDF, %/h	10.2	8.8	4.2	6.1	
Digestible OM, %	82	79	74	75	

Experimental design

- Latin square design, 2x2 factorial arrangement of treatments
- 4 rumen fistulated heifers, 435±30 kg

Period	1	2	3	4	
Heifer					
1	Early silage	Early hay	Late silage	Late hay	
2	Late silage	Early silage	Late hay	Early hay	
3	Late hay	Late silage	Early hay	Early silage	
4	Early hay	Late hay	Early silage	Late silage	

Statistical analysis

- Analysis of variance
- Fixed effects of conservation method, time of harvest and experimental period
- Random effect of heifer

Apparent digestibility

Marker technique

• 5 g Cr₂O₃ added through fistula before the two meals

- Feces collected rectally 3 times/day for 3 days
- Chromic oxide determined colorimetrically -> feces output
- Digestibility calculated from fecal output of nutrients relative to ingested nutrients

Rumen fluid sampling for pH measurement

- Sampling in 1 hour intervals
- from 7:30 to 15:30

 (-0.5 and 7.5 h relative to feeding)
- Immediate measurement of pH

Results - Feed intake

	Early harvest		Late harvest			<i>P</i> -value	
Intake	Silage	Hay	Silage	Hay	SEM	Harvest	Conservation
DM, kg	8.7	9.4	7.2	7.2	0.6	<0.001	NS
NDF, kg	2.7	4.1	3.0	3.6	0.3	NS	<0.001

Results – Apparent digestibility

	Early harvest (May 9)		Late harvest (May 25)		P-values		
Digestibility, %	Silage	Нау	Silage	Нау	Н	С	H × C
ОМ	83	82	79	78	<0.001	0.013	NS
NDF	87	88	80	80	<0.001	NS	NS
pdNDF	94	95	90	90	0.008	NS	NS

Digestible OM, %	82	79	74	75
(Tilley & Terry)				

Results – rumen pH

Results – rumen pH

	Early harvest (May 9)		Late harvest (May 25)		P-values		
Variable	Silage	Нау	Silage	Нау	Н	С	H × C
Min. dorsal pH	6.18	6.14	6.46	6.48	<0.001	NS	NS
Min. ventral pH	6.34	6.42	6.46	6.58	0.045	NS	NS
Mean rumen pH	6.56	6.75	6.71	6.75	0.001	NS	NS

Summary of results

Acknowledgements

Co-authors and supervisors Peder Nørgaard, University of Copenhagen, Denmark Martin Riis Weisbjerg, Aarhus University, Denmark

Collaboration partner Malene Vesterager Byskov, Danish Knowledge Center for Agriculture

Funding

The Danish Knowledge Center for Agriculture (Maelkeafgiftsfonden) University of Copenhagen Research School of Animal Nutrition and Physiology

Thank you for listening

Want to know more? Please contact: anne-k@sund.ku.dk