

Exploring Resistance to Nematodes in 3SR Sheep and Goat Populations

Steve Bishop

+ V. Riggio, G. Salle, N. Mandonnet, M.G. Usai, S. Casu, O. Keane, M. Poli, A. Carta & C.R. Moreno

This presentation represents the views of the Authors, not the EC. The EC is not liable for any use that may be made of the information

3SR: 3.5-year project aimed at:

- Developing & verifying selectable markers for:
 - Mastitis susceptibility (sheep and goats)
 - Resistance to Nematodes (sheep and goats)
 - Ovulation (sheep)
- Developing tools and genomic resources (sheep and goats)

3SR: 3.5-year project aimed at:

- Developing & verifying selectable markers for:
 - Mastitis susceptibility (sheep and goats)
 - Resistance to Nematodes (sheep and goats)
 - Ovulation (sheep)

www.3srbreeding.eu

• Developing tools and genomic resources (sheep and goats)

Through the efforts of 14 Partners in 11 countries

• GWAS (sheep and goats) for nematode & mastitis resistance

Breed	Population	N. genotyped/ phenotype
Blackface	Half sib families in complex pedigree	750
Sarda x Lacaune	BC design (10 F1+G1+G2)	2375
Blackbelly x Romaine	BC design	1000

• GWAS (sheep and goats) for nematode & mastitis resistance

	Breed	Population	N. genotyped/ phenotyped
	Churra	Daughter design (16 families)	1630
	Sarda*Lacaune	BC design (10 F1+ G1+G2)	2375
1	Lacaune	GD design (33 families)	1010
-1-1	Lacaune	Divergent lines	330

- GWAS (sheep and goats) for nematode & mastitis resistance
 - SNP validation studies
 - Genomic prediction

- GWAS (sheep and goats) for nematode & mastitis resistance
 - SNP validation studies
 - Genomic prediction
- Mapping ovulation rate mutations

Heterozygous SNP

	Bree	d N. geno+phe	eno Target phenotype
	Olkuska	64	High vs. low LS for \geq 4 lambings
	Grivette	40	High vs. low LS for \geq 4 lambings
1 Divit	Cambridge	21	Unexplained sterility
	cases {		
,	controls		+ targeted sequencing

Homozvaous SNP

- GWAS (sheep and goats) for nematode & mastitis resistance
 - SNP validation studies
 - Genomic prediction
- Mapping ovulation rate mutations
- Functional (RNA) studies of phenotypes

- GWAS (sheep and goats) for nematode & mastitis resistance
 - SNP validation studies
 - Genomic prediction
- Mapping ovulation rate mutations
- Functional (RNA) studies of phenotypes
- Improving Genomic Resources

Improving Genome Resources: Caprine

Radiation Hybrid map

• 50k SNP chip

- Genome Sequence:
 - Nature Biotechnology Volume (2013): 31, 135–141

Improving Genome Resources: Ovine

- Improvement of sheep genome assemblies
 - Deep sequencing of Texel male

- Sequencing of BAC clones to help close known gaps
- RNA-seq (& DNA-seq) to enable annotation
 - Texel trios: the <u>major</u> data source for sheep genome annotation
 - 1.17 x 10⁹ nucleotides of RNA sequence (i.e. >1 TB data)
- CNV detection

- GWAS (sheep and goats) for nematode & mastitis resistance
 - SNP validation studies
 - Genomic prediction
- Mapping ovulation rate mutations
- Functional (RNA) studies of phenotypes
- Improving Genomic Resources
- Developing Bioinformatic tools
 - GBrowse-based synteny browser: Ovis aries v3.1 Capra hircus v1.0

http://genome.itb.cnr.it/gb2/gbrowse_syn/sheep3.1-goat/

C	HAIN NET alignments for Sheep and Goat		
	instructions		
	Select a Region to Browse and a Reference species:		
	Examples: sheep Chr1:1200000.		
	Search		
La	ndmark: Genome Search Reset	nome to Search:	1
Da	Data Source :		
0	HAIN NET alignments for Sheep and Goat ‡		-
	Display settings		
	Image widths:	Update Image	
	Image options : Chain alignments ⊖on ●off Flip minus strand panels ●on ⊖off Grid lines ●on	●on Off Edges ●on Off Shading ●on Off	

• Starting point GWAS for nematode resistance

• Starting point GWAS for nematode resistance

	Breed	Population	N. genotyped/ phenotype
	Blackface	Half sib families in complex pedigree	750
	Sarda x Lacaune	BC design (10 F1+G1+G2)	2375
	Blackbelly x Romaine	BC design	1000

- Faecal Egg Count (FEC) = common phenotype
 - FEC always heritable
 - QTL always found: several and diverse

- Key Question: is genetic resistance common across breeds?
 If so, at what level?
- 1. Individual SNP level

2. Genomic region level

3. Whole genome level

- Key Question: is genetic resistance common across breeds?
 If so, at what level?
- 1. Individual SNP level
 - Lack of concordance across studies
 - => Could we ever expect it?
- 2. Genomic region level

3. Whole genome level

- Key Question: is genetic resistance common across breeds?
 If so, at what level?
- **1. Individual SNP level**
 - Lack of concordance across studies
- 2. Genomic region level
 - Joint analysis by regional heritability mapping (Riggio et al. today)
 - Validation studies
- 3. Whole genome level

- Key Question: is genetic resistance common across breeds?
 If so, at what level?
- **1. Individual SNP level**
 - Lack of concordance across studies
- 2. Genomic region level
 - Joint analysis by regional heritability mapping (Riggio et al. today)
 - Validation studies
 Blackface
 Sarda x Lacaune
 Blackbelly x Romaine

Region-specific 1k SNP chips Suffolk, Texel Blackface, Manech, Corriedale, Pampinta

- Key Question: is genetic resistance common across breeds?
 If so, at what level?
- 1. Individual SNP level
 - Lack of concordance across studies
- 2. Genomic region level
 - Joint analysis by regional heritability mapping (Riggio et al. today)
 - Validation studies
- 3. Whole genome level
 - Genomic prediction

• Datasets:

- Blackface
 750 (sheep with 50k genotypes)
- Sarda x Lacaune 2375
- Blackbelly x Romaine 1000
- Texel 80

• Approach

- Within-breed (Blackface) cross validation (5-fold)
- Across-breed prediction

• Assessing Genomic Prediction by cross validation

• Assessing Genomic Prediction by cross validation

• Assessing Genomic Prediction by cross validation

Estimate correlation[Predicted GEBV (•), Phenotype (y)]

- Accuracy:
$$r_{g\bullet} = r_{\bullet y} / h$$

• Genomic Prediction: within-breed accuracy

<u>Trait</u>	Accuracy
FEC (Strongyles)	0.54
FEC (Nematodirus)	0.48
IgA	0.53
Weight	0.52

• Genomic Prediction: within-breed accuracy

<u>Trait</u>	Accuracy
FEC (Strongyles)	0.54
FEC (Nematodirus)	0.48
lgA	0.53
Weight	0.52

• Genomic Prediction: across-breed accuracy

<u>Trait</u>	<u>Accuracy</u>	
FEC (Strongyles)	~zero	

Genomic Prediction Interpretation

- Within-breed
 - Accuracy from SNPs describing relatedness of animals

 LD (SNP, causative mutation) minor contribution

Genomic Prediction Interpretation

- Within-breed
 - Accuracy from SNPs describing relatedness of animals
 - ~**85**%
 - LD (SNP, causative mutation) minor contribution
- Across-breed
 - IBS relationships uninformative
 - Linkage phase (marker, causative) differs
 - Too few SNPs for LD

Genomic Prediction Interpretation

- Within-breed
 - Accuracy from SNPs describing relatedness of animals
 - ~**8**5%
 - LD (SNP, causative mutation) minor contribution
- Across-breed
 - IBS relationships uninformative
 - Linkage phase (marker, causative) differs
 - Too few SNPs for LD
 - Common regions of importance are still possible

- Key Question: is genetic resistance common across breeds?
- 1. Individual SNP level
 - Unlikely
- 2. Genomic region level
 - Under investigation, promising so far
- 3. Whole genome level
 - Difficult to demonstrate
- Key Question: what are the mechanisms underlying variation in resistance?
 - Under investigation ...

Conclusions

3SR has been flexible: <u>adapted</u> to & <u>contributed</u> to advances in small ruminant genomic resources

- Major contribution to:
 - Quality of ovine & caprine reference sequences
 - Annotation of sequences
 - Tools and resources for future projects
- Several QTL identified for nematode resistance
 - Proportion of variation accounted for is modest
 - Genomic prediction works within-breed
 - Across-breed validation is underway
 - Functional studies underway

Acknowledgements

Key People:

- Coordinator: Huw Jones (Biosciences KTN)
- Manager: Kezia Williamson (Biosciences KTN)
- WP Leaders: Noelle Cockett, Rachel Rupp, Loys Bodin, Alessandra Stella, Georgios Banos
- Key Researchers: Carole Moreno, Gwenola Tosser–Klopp
- 3SR consortium (<u>www.3SRbreeding.eu</u>)

 Funding
 Image: Second data
 Agreement no. 245140

 Collaborators
 Isgc image: Second data
 Roslin foundation

Thank you for your attention

Improving Genome Resources: Ovine

- RNA-seq to enable annotation
 - Texel (ram, ewe, ewe lamb, 16d embryo)
 - 30+ tissues per animal, whole embryo
 - 1.17 x 10⁹ nucleotides of RNA sequence (i.e. 1.1TB)
 - 2 x 150 bp paired-end reads, stranded
 - $\sim 100 \times 10^6$ read pairs per sample

