EAAP 2013

Loci underlying variation in nematode resistance in three European sheep populations: a joint-analysis

Riggio V.¹, Pong-Wong R.¹, Sallé G.², Usai M.G.³, Casu S.³, Moreno C.², <u>Matika O.¹</u> and Bishop, S.C.¹

> ¹The Roslin Institute and R(D)SVS, UK ²INRA, SAGA, France ³SGB, AGRIS Sardegna, Italy

This presentation represents the views of the Authors, not the EC. The EC is not liable for any use that may be made of the information

- Gastrointestinal nematode infections large impact on the sheep industry:
 - Anthelmintic treatment
 - Production losses

e.g. €100 million/year in UK

- Gastrointestinal nematode infections large impact on the sheep industry:
 - Anthelmintic treatment
 - Production losses

e.g. €100 million/year in UK

- Anthelmintic resistance has developed fast in many nematode populations:
 - Need for new control measures

• Selection for increased resistance to nematodes has often been suggested

- Selection for increased resistance to nematodes has often been suggested
- Nematode resistance is a complex trait:
 - Large number of physiological pathways involved
 - Indicator traits (i.e. Faecal Egg Count) are time specific

- Selection for increased resistance to nematodes has often been suggested
- Nematode resistance is a complex trait:
 - Large number of physiological pathways involved
 - Indicator traits (i.e. Faecal Egg Count) are time specific
- Advantageous to select directly for resistance:
 - Several QTL studies addressed nematode resistance

- Little overall consensus has emerged from these studies in terms of resistance loci:
 - Apparent genetic complexity of the trait
 - Variety of sheep breeds, nematode species and experimental approaches
- Do common regions exist? → meta (or joint) analysis
 - Tool for aggregating information from multiple independent studies

SEVENTH FRAMEWORK

Aim

Identify genomic regions underlying FEC variation in a joint analysis of three European sheep populations

• Data

- Average animal effect for Strongyles FEC on 4123 individuals from the three populations
 - 752 Scottish Blackface (SBF) lambs
 - 2371 Sarda x Lacaune backcross (SAR) ewes
 - 1000 Martinik Black-Belly x Romane backcross (MBR) lambs

Data

- Different Strongyles species and challenges:
 - natural (mixed species) challenge at pasture for SBF
 - mainly Teladorsagia
 - natural (mixed species) challenge at pasture for SAR
 - changes through the year
 - artificial challenge with *Haemonchus* for MBR

Data

- Fixed effects specific for each population
- Animals genotyped with the 50k SNPchip
- QC specific for each population:
 - 38,991 SNPs in common after QC
- SNP positions from Sheep Genome browser v2.0

- QTL found in previous population-specific analyses:
 - SBF:
 - Chr 3 & 6
 - SAR:
 - Chr 7, 12 & 20
 - **MBR**:
 - Chr 5, 12 & 13

- Regional Heritability Mapping (RHM)
 - Variance component approach
 - Fit joint effects of all loci within a genomic region
 - Each chromosome is divided into windows of a pre-defined number of SNPs:

$$y = Xb + Za + Zw + e$$

overall genetic effect

regional combined genetic effect

$$h^{2} = \frac{\left(\sigma_{a}^{2} + \sigma_{w}^{2}\right)}{\left(\sigma_{a}^{2} + \sigma_{w}^{2} + \sigma_{e}^{2}\right)}$$

$$n_w^2 = \frac{\sigma_w^2}{\left(\sigma_a^2 + \sigma_w^2 + \sigma_e^2\right)}$$

Regional h²

Total h²

• Problem 1:

Unrelated populations and therefore IBS relationships uninformative

• Problem 2:

 – few sire families and therefore long chromosome segments inherited intact → long stretches of LD

Material and Methods - Solutions

Problem 1

- Unrelated populations and therefore IBS relationships uninformative
- Genomic relationship matrix (G) set to block diagonal → covariance between populations = 0

• Problem 2 Region of interest

Material and Methods - Solutions

- Problem 1
- Problem 2
 - few sire families and therefore long chromosome segments inherited intact → long stretches of LD
- Two different G matrices:
 - whole \rightarrow using all SNPs across the genome
 - n-1 → created separately for each chromosome excluding the chromosome being interrogated

- Model tested by Likelihood Ratio Test (LRT):
 compared to LogL of model with no QTL
- Correction for multiple testing required:
 - threshold for genome-wide (p<0.05) significance 13.38</p>
 - threshold for suggestive significance 9.11

Results

Plot of all genome using the whole genomic relationship matrix

OAR	window	LRT	h ² _w
20	8	13.78	0.02
20	9	16.50	0.02
20	10	13.88	0.02
4	2	10.24	0.01

Results

Plots of all genome using the n-1 genomic relationship matrix

OAR	window	LRT	h ² w
20	8	21.28	0.02
20	9	23.52	0.02
20	10	20.74	0.02
4	2	14.40	0.02
19	10	13.74	0.02

Results

Plots of all genome using the n-1 genomic relationship matrix

Considerations on data structure

- The n-1 G partially overcomes problem of long stretches of LD
- RHM can detect different types of QTL architecture from LA or LD methods:
 - does not require large differences between contrasting loci in same population
- MHC was most significant region:
 - Region characterised by extreme complexity

Conclusions

- Despite heterogeneity of data, joint-analysis allowed identification of common regions
- Using a whole (block diagonal) G, some QTL significant in individual datasets were lost

 Using the n-1 G, the QTL from individual studies reappeared, and those already found become more significant

EAAP 2013

This presentation represents the views of the Authors, not the EC. The EC is not liable for any use that may be made of the information

