

Mapping a putative autosomal gene controlling ovulation rate and infertility in Cambridge sheep

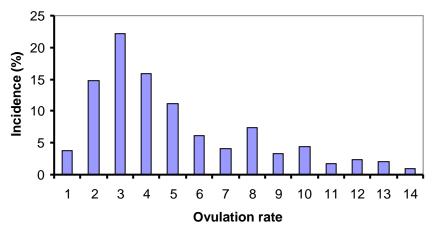
Orla Keane

Teagasc 29th August 2013


This presentation represents the views of the Authors, not the EC. The EC is not liable for any use that may be made of the information

Cambridge breed

- Composite breed developed from a set of 54 ewes with exceptional prolificacy selected in Britain in 1964.
- The foundation ewes had to have achieved a minimum prolificacy of three sets of triplets in consecutive lambings (primarily Clun Forest)
- Mated to Finnish Landrace rams
- Selected males from these mating retained for subsequent use
- Extreme variation in OR and occasional ovarian hypoplasia
- Mutations identified in *GDF9* and *BMP15* which affected OR¹
- Further work suggested there was an additional autosomal recessive gene segregating that caused ovarian hypoplasia
- This gene may also be associated with canalisation of ovulation rate in heterozygous carriers.



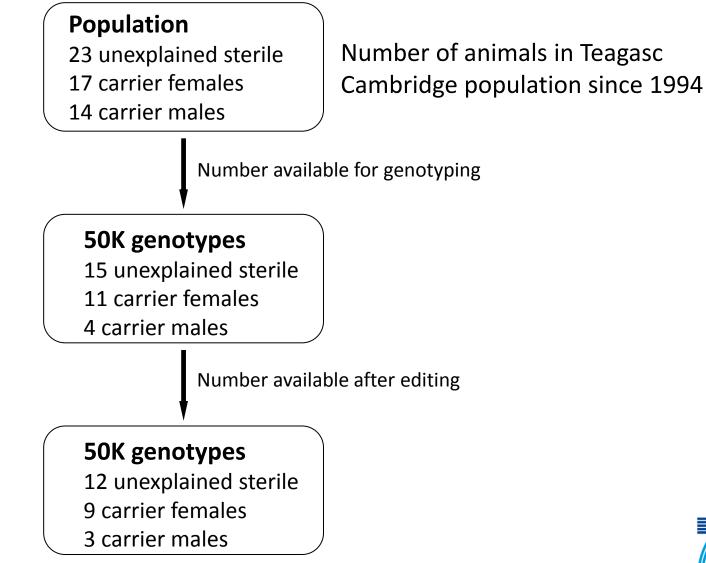
Performance Characteristics

- Mean Litter size = 3.1
- Max litter size = 8
- Litter size varies little with age

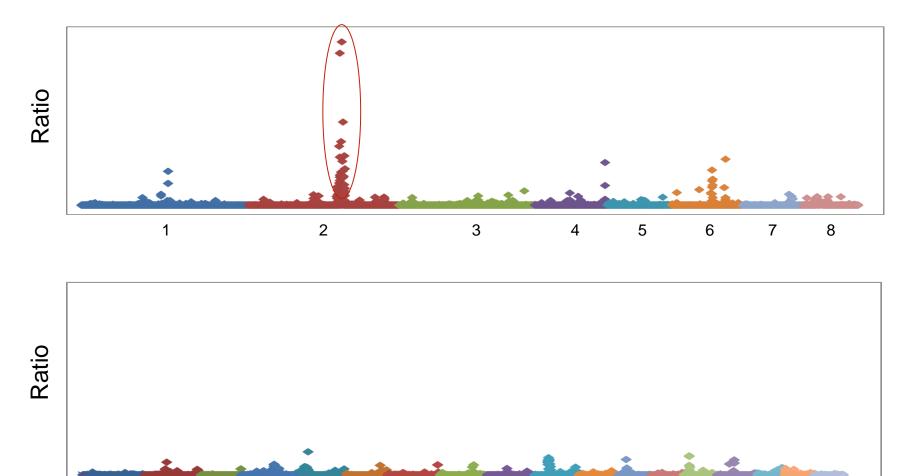
• Extreme variation in OR

Genotypic & Phenotypic characterisation of unexplained steriles

23 unexplained sterile ewes = p = 0.26 344


BMP15	GDF9	No of Unexplained Sterile Ewes
WT/WT	WT/WT	7
WT/WT	WT/FecG ^H	4
WT/ <i>FecX^G</i>	WT/WT	5
WT/FecX ^G	WT/FecG ^H	7

Genotype	Phenotypic characterisation (follicles/cortex recorded)
Unexplained Sterile	100%
GDF9 sterile	50%
<i>BMP15</i> sterile	29%


Discovery Population

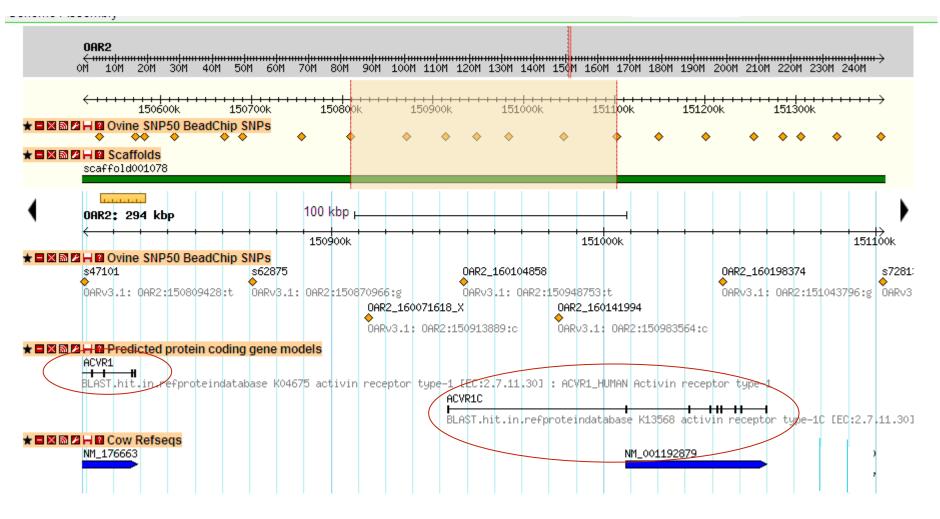
Regions of Homozygosity

Haplotypes

3\$

					u	nex	plair	ned	steri	le								dam	s					sire	s
OAR2	150059057	A	A AA	AA A	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AC	AC	AA	AC	AA	AA	AA	AC	AC
OAR2	150138196	A	G 🗛	AA A	AA	AA	AA	AA	GG	AA	AA	AA	AA	AA	AG	AG	AG	AA	AG	AA	AA	AA	AA	AG	AA
OAR2	150193599	A	G GC	G GG	GG	GG	GG	GG	AA	GG	GG	GG	GG	GG	AG	AG	AA	AG	GG	AG	AG	GG	GG	AG	AG
OAR2	150249776	A	4 A A	AA AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AG	AA	AA	AA	AA	AG	AA
OAR2	150289375	C	c cc	CC	CC	CC	CC	CC	CC	СС	СС	CC	CC	CC	СС	СС	СС	СС	AC	CC	CC	сс	СС	AC	CC
OAR2	150455781	A	c co	CC	CC	CC	CC	CC	AA	СС	CC	CC	CC	CC	AC	AC	AA	AC	CC	AC	CC	сс	СС	СС	CC
OAR2	150487276	A	A AA	AA A	AA	AA	AA	AA	AA	AA	AA	AA	AA	AG	AA	AA	AG	AG	AA	AG	AA	AA	AA	AA	AA
OAR2	150532984	G	G GC	G GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	AG	GG	GG	GG	GG	AG	GG	GG	GG	GG	AG	GG
OAR2	150572256	A	c cc	CC	CC	CC	CC	CC	AA	СС	CC	CC	CC	AC	AC	AC	AA	AC	AC	AC	AC	сс	СС	AC	CC
OAR2	150581854	A	G GC	G GG	GG	GG	GG	GG	AA	GG	GG	GG	GG	GG	AG	AG	AA	AG	GG	AG	AG	GG	GG	GG	GG
OAR2	150690254	A	A AA	AA AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AT	AA	AA	AA	AA	Π	AT
OAR2	150755823	A	G GC	G GG	GG	GG	GG	GG	AA	GG	GG	GG	GG	GG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AG	GG
OAR2	150809428	A	G AA		AA	AA	AA	AA	GG	AA	AA	AA	AA	 ΔΔ	٨G	٨G	GG	٨G	ΔΔ	٨G	ΔΔ	ΔΔ	ΔΔ	٨G	AG
OAR2	150870966	G	G GC	G GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	AG	GG	GG	GG	GG	AG	GG	AG	GG	GG	AG	GG
OAR2	150913889	G	G GC	G GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	AG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG
OAR2	150948753	C	c cc	CC	CC	CC	CC	CC	СС	CC	CC	CC	CC	AC	CC	CC	СС	CC	AC	CC	CC	сс	СС	AC	CC
OAR2	150983564	A	A AA	AA A	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AC	AA	AA	AA	AA	AC	AA
OAR2	151102490	A	A GO	G GG	AG	AG	GG	GG	AA	GG	GG	AG	GG	AG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AA	AG
OAR2	151148561	A	A GO	G GG	AG	AG	GG	GG	AA	GG	GG	AG	GG	GG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AA	AG
OAR2	151200968	G	G 🗛	AA A	AG	AG	AA	AA	GG	AA	AA	AG	AA	AG	AG	AG	GG	AG	AA	AG	AA	AA	AA	AA	AA
OAR2	151253363	A	4 CC	CC	AC	AC	CC	CC	AA	CC	CC	AC	CC	CC	AC	AC	AA	AC	CC	AC	AC	сс	СС	СС	CC
OAR2	151345671	A	A AA	AA A	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AG	AA	AG	AA	AA	AG	AA
OAR2	151393717	C	C AA	AA A	AC	AC	AA	AA	CC	AA	AA	AC	AA	AC	AC	AC	CC	AC	AC	AC	AA	AA	AA	AC	AA
OAR2	151441381	A	A AA	AA AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AG	AA	AA	AA	AA	AG	AA	AA	AA	AA	AG	AA
OAR2	151545534	G	G AA	AA AA	AG	AG	AA	AA	GG	AA	AA	AG	AA	AA	AG	AG	GG	AG	AG	AG	AA	AA	AA	AG	AA
OAR2	151657676	G	G GC	G GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	AG	GG	GG	GG	GG	AG	GG

Flock Haplotypes


 Can we generate unexplained sterile animals by mating animals heterozygous for the haplotype of interest on OAR 2

- Designed a SNP assay for 34 SNP across 10 MB in region of interest on chr 2
- Genotyped flock (n = 142) for region of interest
- 23 SNP remaining after quality control
- Assigned haplotypes with FastPHASE
- Haplotype of interest on chr 2 is a common haplotype in the population

Sheep Genome Browser

ACVR1 & ACVR1C sequencing

• ACVR1 & ACVR1C encode type I TGF- β superfamily member ligand receptors

• TGF- β superfamily ligands bind to a TGF- type II receptor. The type II receptor is a serine/threonine receptor kinase, which recruits and catalyses the phosphorylation of the Type I receptor which subsequently transduces the signal via SMADs

• ACVR1 – sequenced CDS

-No polymorphims found that explain the phenotype

- ACVR1C sequenced CDS
- 5' end of ACVR1C failed to amplify
- ACVR1C-positive BAC sequenced
- No polymorphisms found that explain the phenotype

Whole Genome Sequencing

			unexplained sterile												dams										sires				
OAR2	150059057	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AC	AC	AA	AC	AA	AA	AA	AC	AC			
DAR2	150138196	AG	AA	AA	AA	AA	AA	AA	GG	AA	AA	AA	AA		AA	AG	AG	AG	AA	AG	AA	AA	AA	AA	AG	AA			
OAR2	150193599	AG	GG	GG	GG	GG	GG	GG	AA	GG	GG	GG	GG		GG	AG	AG	AA	AG	GG	AG	AG	GG	GG	AG	AG			
OAR2	150249776	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AA	AA	AG	AA	AA	AA	AA	AG	AA			
OAR2	150289375	CC	CC	СС	CC	CC	СС	CC	СС	CC	сс	сс	CC		СС	СС	СС	СС	СС	AC	CC	CC	СС	СС	AC	СС			
OAR2	150455781	AC	CC	CC	CC	CC	CC	CC	AA	CC	сс	сс	CC		CC	AC	AC	AA	AC	CC	AC	CC	CC	СС	CC	CC			
DAR2	150487276	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AG	AA	AA	AG	AG	AA	AG	AA	AA	AA	AA	AA			
OAR2	150532984	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG		AG	GG	GG	GG	GG	AG	GG	GG	GG	GG	AG	GG			
OAR2	150572256	AC	CC	CC	CC	CC	CC	CC	AA	CC	сс	сс	CC		AC	AC	AC	AA	AC	AC	AC	AC	CC	сс	AC	CC			
OAR2	150581854	AG	GG	GG	GG	GG	GG	GG	AA	GG	GG	GG	GG		GG	AG	AG	AA	AG	GG	AG	AG	GG	GG	GG	GG			
OAR2	150690254	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AA	AA	AT	AA	AA	AA	AA	Π	AT			
OAR2	150755823	AG	GG	GG	GG	GG	GG	GG	AA	GG	GG	GG	GG		GG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AG	GG			
OAR2	150809428	AG	AA	AA	AA	AA	AA	AA	GG	AA	AA	AA	AA		AA	AG	AG	GG	AG	AA	AG	AA	AA	AA	AG	AG			
OAR2	150870966	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG		AG	GG	GG	GG	GG	AG	GG	AG	GG	GG	AG	GG			
OAR2	150913889	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG		AG	GG	GG												
OAR2	150948753	CC	CC	CC	CC	CC	CC	CC	CC	CC	сс	сс	CC		AC	CC	CC	СС	CC	AC	СС	CC	CC	CC	AC	CC			
OAR2	150983564	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AA	AA	AC	AA	AA	AA	AA	AC	AA			
OAR2	151102490	AA	GG	GG	AG	AG	GG	GG	AA	GG	GG	AG	GG		AG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AA	AG			
OAR2	151148561	AA	GG	GG	AG	AG	GG	GG	AA	GG	GG	AG	GG		GG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AA	AG			
OAR2	151200968	GG	AA	AA	AG	AG	AA	AA	GG	AA	AA	AG	AA		AG	AG	AG	GG	AG	AA	AG	AA	AA	AA	AA	AA			
OAR2	151253363	AA	CC	CC	AC	AC	CC	CC	AA	CC	сс	AC	CC		CC	AC	AC	AA	AC	СС	AC	AC	СС	СС	CC	CC			
OAR2	151345671	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AA	AA	AG	AA	AG	AA	AA	AG	AA			
DAR2	151393717	CC	AA	AA	AC	AC	AA	AA	CC	AA	AA	AC	AA		AC	AC	AC	СС	AC	AC	AC	AA	AA	AA	AC	AA			
DAR2	151441381	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AG	AA	AA	AA	AA	AG	AA	AA	AA	AA	AG	AA			
DAR2	151545534	GG	AA	AA	AG	AG	AA	AA	GG	AA	AA	AG	AA		AA	AG	AG	GG	AG	AG	AG	AA	AA	AA	AG	AA			
OAR2	151657676	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG		GG	GG	GG	GG	GG	AG	GG	GG	GG	GG	AG	GG			

Whole Genome Sequencing

- Genomes sequenced to approximately 12 X depth
- Sequence aligned and compared to Texel reference sequence
- 1779 SNP detected in ROI that were
- homozygous for alternative allele in sterile case
- heterozygous in carrier
- Filtered SNP using
- 3 sequenced Laucaune animals
- 75 genome data set (ISGC)
- 49 SNP in large ROI
- 2 SNP in small ROI

Genotyping 6 SNP in additional animals

			unexplained sterile													dams										
OAR2	150487276	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AG	AA	AA	AG	AG	AA	AG	AA	AA	AA	AA	AA
OAR2	150532984	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG		AG	GG	GG	GG	GG	AG	GG	GG	GG	GG	AG	GG
OAR2	150572256	AC	CC	CC	CC	СС	СС	CC	AA	СС	СС	СС	СС		AC	AC	AC	AA	AC	AC	AC	AC	CC	СС	AC	CC
OAR2	150581854	AG	GG	GG	GG	GG	GG	GG	AA	GG	GG	GG	GG		GG	AG	AG	AA	AG	GG	AG	AG	GG	GG	GG	GG
OAR2	150690254	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AA	AA	AT	AA	AA	AA	AA	Π	AT
OAR2	150755823	AG	GG	GG	GG	GG	GG	GG	AA	GG	GG	GG	GG		GG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AG	GG
OAR2	150809428	AG	AA	AA	AA	AA	AA	AA	GG	AA	AA	AA	AA		AA	AG	AG	GG	AG	AA	AG	AA	AA	AA	AG	AG
OAR2	150870966	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG		AG	GG	GG	GG	GG	AG	GG	AG	GG	GG	AG	GG
OAR2	150913889	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG		AG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG
OAR2	150948753	CC	CC	CC	CC	CC	CC	CC	CC	CC	CC	CC	CC		AC	CC	CC	CC	CC	AC	CC	CC	CC	CC	AC	CC
OAR2	150983564	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AA	AA	AC	AA	AA	AA	AA	AC	AA
OAR2	151102490	AA	GG	GG	AG	AG	GG	GG	AA	GG	GG	AG	GG		AG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AA	AG
OAR2	151148561	AA	GG	GG	AG	AG	GG	GG	AA	GG	GG	AG	GG		GG	AG	AG	AA	AG	AG	AG	GG	GG	GG	AA	AG
OAR2	151200968	GG	AA	AA	AG	AG	AA	AA	GG	AA	AA	AG	AA		AG	AG	AG	GG	AG	AA	AG	AA	AA	AA	AA	AA
OAR2	151253363	AA	CC	CC	AC	AC	СС	CC	AA	СС	СС	AC	СС		CC	AC	AC	AA	AC	CC	AC	AC	CC	СС	CC	CC
OAR2	151345671	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	AA	AA	AA	AG	AA	AG	AA	AA	AG	AA
OAR2	151393717	CC	AA	AA	AC	AC	AA	AA	CC	AA	AA	AC	AA		AC	AC	AC	CC	AC	AC	AC	AA	AA	AA	AC	AA
OAR2	151441381	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA		AG	AA	AA	AA	AA	AG	AA	AA	AA	AA	AG	AA

Genotyping 6 SNP surrounding region of interest in

- 4 unexplained sterile
- 9 carrier

Future Work

- Genotype additional sterile animal born 2013 and her parents
- Genotype 19 new SNP in ROI in all available cases/controls
- Complete genotyping of 6 SNP in additional sterile and carrier animals
- Sequence genome of 3 additional Cambridge animals
- Call SNP in region of interest
- If necessary fill gaps in regions of interest

Acknowledgements

- Seamus Hanrahan (Teagasc)
- Henry Walsh (Teagasc)
- Loys Bodin (INRA)
- Stephane Fabre (INRA)
- Gwenola Tosser-Klopp (INRA)
- Julie Demars (INRA)
- Julien Sarry (INRA)
- Pavel Senin (INRA)
- John McEwan (AgResearch)
- James Kijas (CSIRO)
- International Sheep Genomics Consortium

 $\mathbf{A}_{\mathbf{GRICULTURE}}$ and $\mathbf{F}_{\mathbf{OOD}}$ $\mathbf{D}_{\mathbf{EVELOPMENT}}$ $\mathbf{A}_{\mathbf{UTHORITY}}$

Farming, Food and Health. First ™ Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi

