

DETECTION OF QTL INFLUENCING SOMATIC CELL SCORE IN CHURRA SHEEP EMPLOYING THE OVINESNP50 BEADCHIP

B. Gutiérrez-Gil, E. García-Gámez, A. Suárez-Vega, J.J. Arranz* Dpto. Producción Animal. Facultad de Veterinaria. Universidad de León. 24071 León, Spain.

	Chr. [Number SNPs/Chr]	Peak position (Morgans)	Localization (Mb); Flanking interval	CI= 2*log(test) drop off (Mb)	Average effe (SD of trait) significant families [number o significant families]
			21.72		
LA	[910]	0.217	S39376.1	21.2-23.8	0.233
	OAR1 [4987]	2.597	259.65 OAR1_280315444.1 OAR1_280355916.1	259.6-259.8	0.211
	OAR2 [4676]	2.087	208.66 s12784.1 OAR2_220142031.1	208.6-208.8	0.262 [4]
	OAR3 [4164]	2.123	212.34 s27933.1 s42120.1	212.2-212.4	0.184 [6]
LDLA	OAR13 [1402]	0.717	71.73 s64654.1 - DU360920 246.1	71.6-71.8	0.283
	OAR1 [1178]	0.340	33.95 OAR17_36829676.1 s46426.1	33.8-34.0	0.249 [1]
	OAR18 [1192]	0.126	12.58 OAR18_12500969.1 OAR18_12576454.1	12.5-12.7	0.263 [3]
	OAR19 [1032]	0.263	26.30 OAR19_27611685.1 s14176.1	26.1-26.4	0.228 [7]
	OAR20 [910]	0.237	23.72 OAR20_24966073.1 s18014.1	22.6-23.8	0.245 [10]
	OAR25 [846]	0.154	15.38 OAR25_17043093_X.1 s37560.1	15.3-15.5	0.245 [6]
	[1032] OAR20 [910] OAR25 [846]	0.263 0.237 0.154	s14176.1 23.72 OAR20_24966073.1 s18014.1 15.38 OAR25_17043093_X.1 s37560.1	26.1-26.4 22.6-23.8 15.3-15.5	1.0 1.0 1.0 1.0 1.0

29 positional candidate genes extracted from the identified QTL regions

- The ranked list of 24 genes included in *BioGraph*⁴ based on the "ranking score (RS)" related to the target term will be considered to select functional candidate genes to further study.
- The genes showing the higher RS have previous reports in relation to the immune response and are related to the QTL detected on
 - OAR3: Interleukin 17A receptor (IL17RA)
 - OAR20: Beta-Defensin 12 (*DEFB112*)

 Cysteine-rich secretory proteins 1,
 3 (*CRISP1*, *CRISP2* and *CRISP3*)

CONCLUSIONS

- Results on OAR20: replication of the previously reported QTL on OAR20 in Churra sheep.¹
- Promising functional candidate genes have been detected for the QTL detected on OAR3 and OAR20.
- Future research may undertake the possible relationship of these candidate genes with the SCS phenotype in Churra sheep

REFERENCES 1. Gutiérrez-Gil et al. (2007). J. Dairy Sc 90(1):422-426; 2. Filangi et al. (2010). Proc. 9th WCGALP:1-6 August; Leipzig. p. 787. 3: www.ensembl.org/biomart/martview; 4: http://biograph.be/about/welcome

Especial ACKNOWLOGMENTS are due to ANCHE, the breeders' association for its collaboration.