Predicting lifespan of dairy cows Phenotypic and genetic change during life

Mathijs van Pelt

Gerben de Jong and Roel Veerkamp

Introduction - Longevity

- Longevity = productive lifespan = days between 1st calving and last testdate
 - Available when cow is culled

Current genetic evaluation in The Netherlands

- Piecewice Weibull Model
- Survival Kit software (Ducrocq & Sölkner)
- Predictors included with selection index

Introduction - Longevity

Problem:

- Breeding values fluctuate too much
- Especially from 1st to 2nd crop information

Hypothesis:

- Model is too simplistic in modelling the genetic variation in longevity
- Assumes longevity is genetically same trait during life

Aim

Investigate the phenotypic and genetic (co-)variation of longevity

1. During total lifespan

2. Within and across lactations

Material and methods – Data

National dataset available from CRV

- Pedigree (20M), lactations (40M), movements (100M)
- Total dataset
 - Per cow one record for each month in productive life
 - Cows present in period 1988 2012
 - 370M records of 10M cows in total
- Dataset sized down
 - 27 herds
 - ~25K black & white cows (1-120 months in productive life)
 - ~600 sires
 - ~850K records

Material and methods – Genetic analysis

Random regression model

 $Y = X\beta + Za + Zp + e$

Y = survival (1 – 120 months in productive life)

$\boldsymbol{\beta}$ = fixed effects

- Herd-year-season of calving
- Year-season of observation
- Parity-month in lactation
- Parity-year-season of calving
- Age at first calving (2nd order Legendre polynomial)
- Month in life (4th order Legendre polynomial)
- **a** = additive genetic random effect
- **p** = permanent environment random effect

➢ 2nd order Legendre polynomials for a and p

genetische evaluatie stieren

Material and methods – Genetic analysis

Time covariables for a and p in random regression (RR)

- 1. During total lifespan
 - RR on months in life (MIL)
- 2. Within and across lactations
 - RR per parity on months in milk (par x MIM)
 - Parity 1, 2, 3+ with a maximum of 18 months in milk
- Use of uncorrelated residual classes
 - 1. MIL: 40 classes of 3 months
 - 2. par x MIM: 3 parity groups x 18 MIM classes
- Analysis with ASREML (Gilmour *et al.*, 2009)

Results – phenotypic means (MIL)

Results – phenotypic means (par x MIM)

Results – Genetic parameters (MIL)

	variance					
months		permanent				phenotypic
in life	genetic	environment	residual	phenotypic	h ²	mean (%)
2	7.3	5.5	90.6	97.9	0.07	98.77
20	6.4	4.8	142.2	148.5	0.04	98.58
40	5.2	3.9	271.1	276.3	0.02	97.20
60	12.4	9.3	352.8	365.3	0.03	96.00
80	48.4	36.3	385.8	434.2	0.11	95.26
100			•••			94.45
118	•••	•••	•••	•••	•••	95.41

Results – Genetic correlations (MIL)

Results – Genetic correlations (par x MIM)

Conclusions

Survival is a different trait across and within lactations

- Differences in phenotypic means
- Genetic correlations < 0.90

Modelling in a more complex way to get:

- Better understanding of survival
- More stable breeding values

Thank you for your attention

Questions?

Project is part of

mathijs.vanpelt@wur.nl

Genetische evaluatie stieren

