Madouasse et

Context

Data

Disease detection

Results

Conclusions

Use of monthly collected milk yields for the early detection of vector-borne emerging diseases.

A. Madouasse A. Lehébel A. Marceau H. Brouwer-Middelesch C. Fourichon

August 29, 2013

Madouasse et al.

Context

Data

Disease detection

Results

Conclusions

2 Data

4 Results

Plan

・ロ ・ ・ 一 ・ ・ 三 ト ・ 三 ・ シ ミ ・ シ へ ()
2/14

Vector-borne disease early detection

Madouasse et

al.

Context

Data

Disease detection

Results

Conclusions

• Emergence of 2 vector-borne diseases in ruminants in Northern Europe since 2006

<ロ> (四) (四) (三) (三) (三) (三)

3/14

Vector-borne disease early detection

Madouasse et

al.

Context

Data

Disease detection

Results

- Emergence of 2 vector-borne diseases in ruminants in Northern Europe since 2006
 - BTV in 2006
 - Abortions
 - Decreased fertility
 - Decreased milk production

イロト 不得下 イヨト イヨト 二日

3/14

Vector-borne disease early detection

Madouasse et

al.

Context

Data

Disease detection

Results

- Emergence of 2 vector-borne diseases in ruminants in Northern Europe since 2006
 - BTV in 2006
 - Abortions
 - Decreased fertility
 - Decreased milk production
 - Schmallenberg in 2011
 - Stillbirths & malformations in newborns
 - Decreased milk production

イロト 不得下 イヨト イヨト 二日

3/14

Vector-borne disease early detection

Madouasse et

al.

Context

Data

- Disease detection
- Results
- Conclusions

- Emergence of 2 vector-borne diseases in ruminants in Northern Europe since 2006
 - BTV in 2006
 - Abortions
 - Decreased fertility
 - Decreased milk production
 - Schmallenberg in 2011
 - Stillbirths & malformations in newborns
 - Decreased milk production
- Increased risk?
 - Global warming
 - Trade

Madouasse et

al.

Context

Data

- Disease detection
- Results
- Conclusions

Syndromic surveillance

4/14

- The next emergence
 - What?
 - When?
 - Where?

Madouasse et

al.

Context

Data

- Disease detection
- Results
- Conclusions

Syndromic surveillance

- The next emergence
 - What?
 - When?
 - Where?
- Need non specific methods of detection
 - \Rightarrow Syndromic surveillance

Madouasse et

al.

Context

- Data
- Disease detection
- Results
- Conclusions

Syndromic surveillance

<ロ> (四) (四) (三) (三) (三) (三)

4/14

- The next emergence
 - What?
 - When?
 - Where?
- Need non specific methods of detection
 - \Rightarrow Syndromic surveillance
- Milk production
 - High metabolic demand for the dairy cow
 - \Rightarrow Non specific
 - ⇒ Precocious

Madouasse et al.

Context

Data

Disease detection

Results

Conclusions

im of the study

• Evaluate milk yield from milk recording as an indicator to be included in an emerging disease surveillance system.

Madouasse et al.

Context

Data

Disease detection

Results

Conclusions

Aim of the study

• Evaluate milk yield from milk recording as an indicator to be included in an emerging disease surveillance system.

(日) (同) (三) (三)

3

5/14

Data

• Milk recording data from French dairy cows

Madouasse et al.

Context

Data

Disease detection

Results

Conclusions

Aim of the study

• Evaluate milk yield from milk recording as an indicator to be included in an emerging disease surveillance system.

Data

• Milk recording data from French dairy cows

Study design

- 1 Prediction of expected milk productions
- 2 Calculation of **Observed Expected** productions
- 3 Detection of **clusters** of low milk production

Madouasse et al.

Context

Data

Disease detection

Results

Conclusions

Aim of the study

• Evaluate milk yield from milk recording as an indicator to be included in an emerging disease surveillance system.

Data

• Milk recording data from French dairy cows

Study design

- 1 Prediction of expected milk productions
- 2 Calculation of **Observed Expected** productions
- 3 Detection of **clusters** of low milk production

Period studied

- 2006: Before BTV-8 emergence
- 2007: During BTV-8 emergence

Madouasse et

al.

Context

Data

Disease detection

Results

Conclusions

Milk recording data

Number of herds per km²

イロト イポト イヨト イヨト

3

6/14

• Milk recording:

- Yields of all cows from a herd
- Monthly basis
- Herd location: municipality level
- \sim 60% of French dairy herds

Madouasse et al.

Data

Milk recording data

Number of herds per km²

- Milk recording:
 - Yields of all cows from a herd
 - Monthly basis
 - Herd location: municipality level
 - \sim 60% of French dairy herds

For this project

All the data collected between 2003 and 2007

Madouasse et

Context

Data

- Disease detection
- Results
- Conclusions

BTV notification data

- Emergence of BTV-8 in 2006 in Belgium/Germany/the Netherlands
- Disease expected in France in 2007
 - Notification of clinical suspicions mandatory
 - · Serological tests on suspected animals
 - Active surveillance around the affected area

Madouasse et

aı.

Context

Data

Disease detection

Results

Conclusions

Prediction of expected milk production

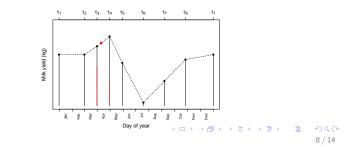
イロト 不同下 イヨト イヨト

3

8/14

- Prediction of expected herd test-day milk productions
- From 3 years of historical data
 - 2003 to 2005 \Rightarrow 2006
 - 2004 to 2006 \Rightarrow 2007

Madouasse et


al.

Disease detection

Prediction of expected milk production

- Prediction of expected herd test-day milk productions
- From 3 years of historical data
 - 2003 to 2005 \Rightarrow 2006
 - 2004 to 2006 \Rightarrow 2007 Linear mixed models

$$\begin{split} Y_{ij} = \sum_{k=1}^{8} I_k \left[(\beta_k + v_k^j) \frac{d - \tau_k}{\tau_{k+1} - \tau_k} + (\beta_{k+1} + v_{k+1}^j)(1 - \frac{d - \tau_k}{\tau_{k+1} - \tau_k}) \right] + \varepsilon_{ij} \\ v_k^j &\sim \textit{MVN}(0, \Sigma_j) \\ \varepsilon_{ij} &\sim (0, \sigma_{ij}) \end{split}$$

Madouasse et al.

Context

Data

Disease detection

Results

Conclusions

Scan statistic

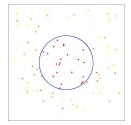
- An area with potential disease clusters
- A normally distributed variable

Madouasse et

Context

Data

Disease detection


Results

Conclusions

Scan statistic

イロト イポト イヨト イヨト

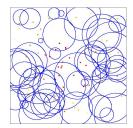
- An area with potential disease clusters
- A normally distributed variable
- A circle of random location and size is chosen
- *H*₀: The distribution of the variable is the same inside as outside of the circle
 - Likelihood of a measure given H_0 ?
 - Log likelihood ratio (LLR)

9/14

Madouasse et

Context

Data


Disease detection

Results

Conclusions

Scan statistic

- An area with potential disease clusters
- A normally distributed variable
- A circle of random location and size is chosen
- *H*₀: The distribution of the variable is the same inside as outside of the circle
 - Likelihood of a measure given H_0 ?
 - Log likelihood ratio (LLR)
- Hundreds of circles
- Circles ranked according to LLR

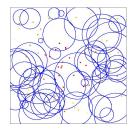
9/14

イロト 不得下 イヨト イヨト 二日

Madouasse et

Context

Data

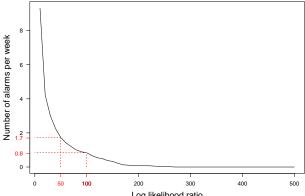

Disease detection

Results

Conclusions

Scan statistic

- An area with potential disease clusters
- A normally distributed variable
- A circle of random location and size is chosen
- *H*₀: The distribution of the variable is the same inside as outside of the circle
 - Likelihood of a measure given H_0 ?
 - Log likelihood ratio (LLR)
- Hundreds of circles
- Circles ranked according to LLR
- Algorithm implemented in **SaTScan**TM



Madouasse et al.

Results

LLR threshold-False alarms

• Clusters detected before the 1st March 2007

Log likelihood ratio

イロト イポト イヨト イヨト э 10/14

■ つへへ 11/14

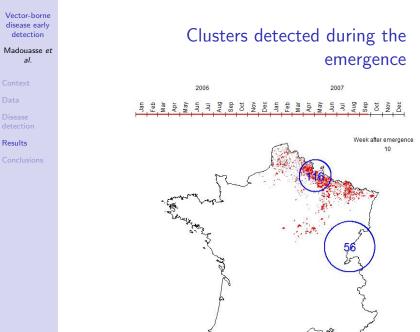
≣ •⁄০৭ে 11/14

≣ •⁄০৭ে 11/14

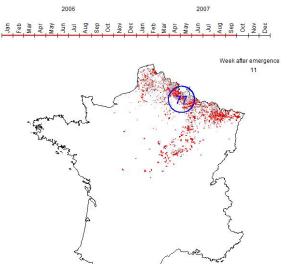
≣ •⁄০৭ে 11/14

= ♥) Q (* 11 / 14

Vector-borne disease early Clusters detected during the detection Madouasse et emergence al. 2006 2007 Jan Mar Mar Mar Mar Apr Apr Mar Mar Mar Mar Jun Nov Oct Dec Cot Jun Nov Sep Week after emergence Results 5


■ つへで 11/14

≣ ∽९९C 11/14


■ つへで 11/14

■ つへで 11/14

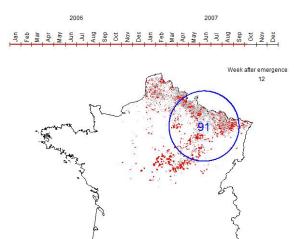
■ つへへ 11/14

E ∽ Q (~ 11 / 14

≣ ৩৭ে 11/14

Vector-borne disease early detection

Madouasse et


al.

Context

Data

Disease detection

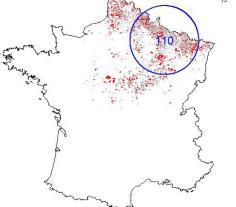
Results

≣ ৩৭ে 11/14

disease early detection Madouasse *et*

Vector-borne

al.


Context

Data

Disease detection

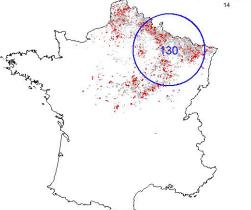
Results

≣ ৩৭ে 11/14

Vector-borne disease early detection

Madouasse et

al.


Context

Data

Disease detection

Results

≣ ৩৭ে 11/14

disease early detection Madouasse *et*

Vector-borne

al.

Context

Data

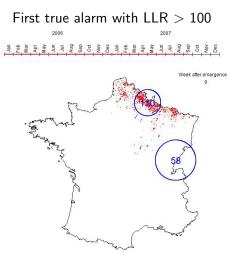
Disease detection

Results

Madouasse et

al.

Context


Data

Disease detection

Results

Conclusion

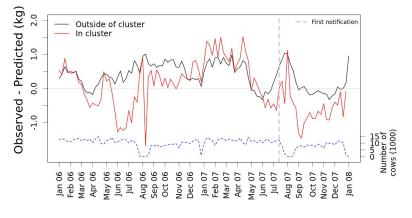
Milk production in the affected area

Madouasse et

al.

Context

Data


Disease detection

Results

Conclusions

Milk production in the affected area

First true alarm with \mbox{LLR} > 100

Conclusions

Vector-borne disease early detection

Madouasse et

al.

Context

Data

Disease detection

Results

- Milk production dropped when the disease emerged
 - Deviation from expected $\sim 1~\text{kg}$ at the maximum
 - Deviation of the same magnitude between May and July 2006
 - Very low number of recordings at the beginning of the outbreak
- Main limitation: difficulty to predict milk production in the absence of disease
 - \Rightarrow False positives
 - Is it possible to improve prediction?
 - Prediction at the cow-level: computationally intractable
 - Different model?
 - Incorporate more information: Climate, feed price, ...

Madouasse et

al.

Context

Data

Disease detection

Results

Conclusions

Thank you!

Aurelien.Madouasse@oniris-nantes.fr