

Surveillance of emerging diseases in cattle based on reproduction data

C. Fourichon¹, A. Marceau¹, T. Lesuffleur¹, A. Madouasse¹, A. Lehebel¹, Y. van der Stede², G. van Schaik³

¹ONIRIS – INRA, Nantes, France ²CODA-CERVA, Brussels, Belgium ³GD Animal Health Service, Deventer, The Netherlands

Background of the project

Available data for syndromic surveillance

- Reproduction data for dairy cattle
 - Dates of AI
 - Dates of calving
- High coverage
- Continuity in time

■ Use for Identification + Payment + Pedigree → Reliability

Basis & Hypothesis of the project

Infectious diseases can impair reproduction

- e.g. BTV
- → return-to-service
- \rightarrow abortions

Can an increase in reproduction disorders be used to early detect a disease emergence?

- 1. To develop and evaluate indicators of health disorders based on reproduction data for early detection of emerging diseases
- 2. To evaluate the performances of modelling approaches for surveillance
 - Ability to detect an emergence
 - Timeliness: early detection
 - Reduced number of false alarms

Using emergence of BTV in 2007-2008 in France as a case

Definition of five complementary indicators

Computing time series for each indicator

For indicator 1 to 5: daily rates of occurrence

Separately in cows and in heifers

Number of events in cows/heifers that day Number of cows/heifers at risk that day

Cow/heifers at risk:

- Present in the herd
- In the ad hoc interval for the indicator
- Not censored (by a return or calving since AI)

Forecasting and measures of differences

History based prediction

Learning period

2003 to 2006 (+/- yearly update)

2007 to 2011

Forecast period

Time-series statistical modelling

- ARMA
- EWMA
- Farrington algorithm
- Trigonometric regression over time
- Logistic model with covariates on cow characteristics

Differences

- Confidence interval of the prediction
- CUSUM: cumulative difference observed-predicted

Results: variations in indicators over time

Results: duration of « high » difference

#weeks >95%Cl during the BTV outbreak (median)

Results: combined indicators per district

indicators with elevation >3 weeks per district

District not infected or #herds <100

Automatic detection of elevations

Automatic detection of elevations: CUSUM

Calculation of a CUSUM in each district

Cumulative sum

Results: ability to detect an infected district

Results: Timeliness

Precocity of the detection

In districts with final prevalence > 10% (at the end of the vector season)

Interval between 1st clinical notification and 1st alarm in the district (median)

CUSUM: effect of the threshold h

Example: short gestation in one district

Results: h threshold and timeliness

Interval from clinical notification to detection

In districts with final prevalence > 10%

Results: h threshold and specificity

Number of false alarms

All districts

Median number of alarms

Covariate model ARMA EWMA Temporal regression Farrington

Relevance and effectiveness of 4 indicators out of 5 to detect BTV outbreaks

- 3 = previously demonstrated effects of BTV
- early gestation = biological mechanism unknown
 - Fever? (extension to a number of diseases)
- No difference between statistical models for prediction \rightarrow simplicity

Choice of the h threshold → decision-maker's priorities between Se, Sp and timeliness

Conclusions

- Reproduction data are of interest for syndromic surveillance
- Preferably combine several indicators to detect « multiple » signals
 - Interpretation of alarms
- If one indicator only : the most reactive one = « short gestations »

Acknowledgements

Project team

- ONIRIS INRA, Nantes, France
- CODA-CERVA, Brussels, Belgium
- GD Animal Health Service, Deventer, The Netherlands

Funding

- EU EMIDA ERA-Net
- ANR (French Research Funding Agency)

Data

- **CTIG**, **INRA Jouy en Josas** (Reproduction data)
- French Ministry of Agriculture, DGAI (BTV notifications)

That's all for today...

Thanks for your attention!

christine.fourichon@oniris-nantes.fr

