Definition and utilization of heritable variation in reproduction ratio R₀

Mahlet T. Anche^{1,2}, Mart C. M. de Jong², Piter Bijma¹

¹Animal Breeding and Genomic centre, Wageningen Institute of Animal Sciences (WIAS), Wageningen University, The Netherlands

²Quantitative Veterinary Epidemiology Group, Wageningen Institute of Animal Sciences (WIAS), Wageningen University, The Netherlands

Background

- Genetic variation between animals
 - resistance
 - infectivity
 - tolerance etc...
- Utilize existing heritable variation via Selective breeding
- Ultimately...

Reduce size of an epidemic/level of Endemic Equilibrium

Back ground

Reproduction ratio R₀ - Important parameter

Average # new cases/ infectious life time

Size of epidemic and level of endemic equilibrium

Threshold value

- < 1 Disease will die out
- > 1 possible major disease outbreak

Reduce epidemic :- reduce R₀

Genetics Vs. Epidemiology

- Breeding to reduce R₀
 - **Breeding values**
 - Heritable variation
- However...
 - Quantitative Epidemiology
 - **Quantitative Genetics**

To define breeding value and heritable variation in R₀

What selection schemes allow us to utilize this heritable

variation ?

B

→ Recovered α **Transmission rate parameter Recovery rate**

of new cases per unit of time

Transmission of an infection depends on

- susceptibility(γ_i) of the recipient i

- infectivity($\boldsymbol{\varphi}_i$) of infectious individual j

Genetically Heterogeneous population $\beta_{ij} = \gamma_i \varphi_j$

Genetic model

• Genetically heterogeneous - Diploid population Two loci Susceptibility(γ) Infectivity(φ) Two allele g/G

- f/F
- Hardy Weinberg Equilibrium (HWE)
- No Linkage Disequilibrium (LD)
- Additive effect without dominance

WAGENINGEN UNIVERSITY WAGENINGEN UR

Can we define breeding values and

heritable variation in R₀?

Total breeding value R₀

• Population R₀ : Next Generation Matrix

$$R_0 = \frac{\overline{\gamma} \, \overline{\varphi}}{\alpha}$$

Breeding value in R_0 (Bijma 2011)

$$A_{R_0,i}=\frac{\gamma_i\varphi_i}{\alpha}$$

And Population $R_0 = \overline{A_{R_0}}$,

• Heritable variance: variance in Breeding value

Heritable variance in R₀

$$\operatorname{var}(A_{R_0}) = \left\{ \left[4p_g^2 g^2 + 2p_g (1 - p_g)(g + G)^2 + 4(1 - p_g)^2 G^2 \right] \\ \left[4p_f^2 f^2 + 2p_f (1 - p_f)(f + F)^2 + 4(1 - p_f)^2 F^2 \right] - \overline{\varphi}^2 \overline{\gamma}^2 \right\} \frac{c}{\alpha}$$

$$\Delta R_0 = i\rho \sqrt{var(A_{R_0})}$$

where i is selection intensity, ρ is correlation coefficient and $\sqrt{var(A_{R_0})}$ is variance in BV in R_0

i and ρ – scale free parameters $var(A_{R_0})$ - potential of the population to selection

What selection schemes allow us to utilize this

heritable variation ?

Simulation

Diploid population

100 groups/100 size

degree of relatedness r : 0 -1

Epidemic started by one random individual

Phenotypic selection – escaped ones

Discrete generations

Results: without relatedness

Susceptibility

WAGENINGENUR

With relatedness

Population R₀

Conclusion

Conceptually

define Breeding Value and heritable variation in R₀ Next -:- extend to polygenic loci

Amount of selection response depends on

Relatedness among interacting individuals increase in correlation(ρ) b/n A_{R_0} and disease phenotype (0/1)

 $\rho_{unrelated} = 0.033$

 $\rho_{related} = 0.094$

$$\Delta R_0 = i\rho \sqrt{var(A_{R_0})}$$

Remarkably !

- Susceptibility
 - Direct genetic effect

Indirect genetic effect

Consequently

Gen

underestimation of heritable variance

underestimated heritability

Thank you for your attention !

mahlet.anche@wur.nl

