

64th Annual Meeting of the European Federation of Animal Science Nantes, August 26th-30th, 2013

An Economical Tool for the Assessment of *Salmonella* Control Strategies in the Pork Supply Chain

Stéphane Krebs, Mily Leblanc-Maridor & Catherine Belloc

UMR1300 BioEpAR Oniris-INRA, Nantes

Main objective:

 The aim of this study is to develop a useful tool to support decision making regarding food pathogen control throughout the pork supply chain

2 steps:

- Building a generic model (\rightarrow cost-effectiveness analysis)
- Application to Salmonella control in the pork supply chain

Context: Salmonella in pork supply chain

Control strategies

7 intervention strategies considered in the model:

- 'Farm'
- 'Transportation-Lairage'
- Slaughterhouse'
- 'Farm' + 'Slaughterhouse'
- 'Farm' + 'Transportation-Lairage'
- 'Transportation-Lairage' + 'Slaughterhouse'
- 'Farm' + 'Transportation-Lairage' + 'Slaughterhouse'

$$p_{_F} = (1 - lpha) \cdot p_{_0}$$
 where $0 \le lpha \le 1$

Effectiveness : 'Transportation-Lairage' intervention

An Economical Tool for the Assessment of Salmonella Control Strategies in the Pork Supply Chain

Effectiveness: 'Slaughterhouse' intervention

$$p_s = (1 - \beta) \cdot p_\tau$$
 where $0 \le \beta \le 1$

Effectiveness: <u>'Farm'</u> intervention only

Effectiveness: <u>'Slaughterhouse'</u> intervention only

Consisting Ecole Nationale Vétérinaire, Agroatimentaire et de l'Alimentation

Effectiveness: <u>'Farm' + 'Slaughterhouse'</u>

Cole Nationale École Nationale Vétérinaire, Agroatimentaire et de l'Alimentation

Effectiveness: intervention strategies ranking

Consistent École Nationale Vétérinaire, Agroatimentaire et de l'Alimentation

Cost-effectiveness analysis

р

The most cost-effective intervention strategy is the one for which the following ration is maximal:

$$\frac{p^* - p_i}{C_i}$$

- where i = F, S, T, FS, FT, ST, FST
 - p_i = prevalence after slaughter associated to intervention *i*

 C_i = cost associated to intervention *i*

Application to Salmonella control

To parameterize the model, several data are required:

- On-farm prevalence in the absence of intervention
- Post-farm infection risks
- Effectiveness of control strategies implemented at each stage of the pork supply chain
- Costs of these control strategies

Application to Salmonella control

Model parameterization based on :

- Outcomes of epidemiological models
- Data available in the literature
- Expert knowledge

Parameterization can be based on average values, but also on distributions to take into account the variability of *Salmonella* prevalence between batches

Numerical illustration: Monte Carlo simulation results

Simulation results show the incidence of the heterogeneity of Salmonella prevalence between batches on the choice of an intervention strategy

For each intervention strategy, the probability of not reaching the prevalence target can also be assessed

Conclusion

The framework developed in this study is a flexible tool that can be easily extended to take into account a large variety of control measures at each stage of the pork supply chain

Our model is a useful tool for decision support, taking explicitly into account public health goals (prevalence target) and the large variability of *Salmonella* prevalence between pig batches

Thank you for your attention!

Acknowledgements

This work was supported by the French Research Agency, program Investments for the future, project ANR-10-BINF-07 (MIHMES)

