
A graph database to store and 
manage phenotypic, pedigree 
and genotypic data of livestock 

Filippo Biscarini 

EAAP 2013 – Nantes (France) 

PhD, Statistical geneticist, Dipartimento di bioinformatica PTP - Lodi 



Caveat 

Premise: 

One of the coauthors left (the main expert … argh!) 

 

“Salvage-whatever-possible” 

 tell you what this is about 

 tell you how it basically works 

 tell you what we have so far set up 

 

 won’t be able to show any comparison in performance (it 
was planned but …) 

 

Doesn’t mean this can’t be taken up again (maybe someone is 
interested!) 

 



Text files & spreadsheets 

country cows Pedigree records 

Germany ~ 4 million ~ 20 million > 300 million 

• parse each time (e.g. by chromosome, subset of animals etc …) 

• less stable and less safe 

• increasingly impractical with big data (e.g. HD SNP-chips, 

whole-genome sequences etc …)  



Relational databases 

• Relational  databases 

• Tables 

• Relations (between tables) 

• SQL (queries instead of writing a 

script) 

SELECT snp_genotype FROM 

genotypes_table WHERE 

chromosome=1; 

1.  more practical 

2. faster 

3. safer and more stable 



Graph theory 

• Euler and the 7 bridges of Königsberg 

• “Solutio problematis ad geometriam situs pertinentis”. Commentarii Academiae 

Scientiarum Imperialis Petropolitanae 8 ( 1736) 128- 140. 

  

 

 

 

 

• Graphs: nodes and connections 

• common models for natural and human structures 

• computer networks 

• molecules (atoms and chemical bonds) 

• habitats and migration paths (breeding patterns, spread of diseases or parasites …) 



Graph database 

• nodes (e,g, movies, directors, actors), connections (e.g. cast, direction) and 

properties (e.g. character name, actor name, movie year …) 

 Features (promises): 
• no indexes 

• suited for associative data 

• faster (at least for graph-like queries) 

• naturally translates into object-oriented programming 

• scales better to large datasets 

• accommodates better changing data 



Our graph database 

Working example 
• animal dataset (buffaloes): phenotypes, genotypes and pedigree 

• 3 layers: traits, animals, markers 

traits 

markers 

animals (kinship value on 

pedigree connections) 

Milk yield 

[3322 kg] 

rs123456 

chr :1 

pos: 325326 

[AA] 

[0.5] 



Setting up the graph database 

• Graph DBs are still an active field of research 

• Not yet a standard query language (like SQL for relational databases) 

• Lack of mature commercial products and user-friendly interfaces 

• Several different ongoing projects 

 

• neo4j (http://www.neo4j.org/) 

• Ruby (create and populate the graph database) 

• Json (format for data interchange –associative array or hash) 

 

http://www.neo4j.org/


Web Interface 



Neography 

Ruby gem to traverse the graph 

 

n1 = Neography::Node.load(15) 

q1= n1.outgoing(:contain_maker).depth(2).include_start_node 

 

#<Neography::NodeTraverser:0x686baa51 @order="depth first", @filter={"language"=>"builtin", 

"name"=>"all"}, @relationships=[{"type"=>"contain_maker", "direction"=>"out"}], @depth=2, 

@uniqueness="none", @from=#<Neography::Node position="85031448", name="AX-

85040742", chromosome="15">> 

Marker name: AX-85040742 

Marker chromosome: 15 

Marker position: 85031448 

[parse the hash with Ruby] 



Cypher 

• declarative query language to search and update the graph (no need to traverse 

the graph structure writing a script)  

• still growing and maturing. 

• some keywords (e.g.WHERE, ORDER BY) are inspired by SQL 

 

START animal=node:node_auto_index(ID = ‘ITM123456789') 

MATCH animal[:related]->()-[:related]->related_to 

RETURN animal, related_to 

START a=node(4) RETURN a 

 

 

 

 



Graph visualization 



Conclusions 

Breeding and genomics data are associative 

Scaling is an issue (big data) 

Graph databases may offer a convenient alternative to store and manage data in 

animal breeding and genomics 

 

 Relatively recent area of research 

R&D needed before a “commercial” product 

can be obtained 

Compare with relational DBs in terms of 

performance, ease of use etc … 

 


