64th EAAP Meeting Nantes, 2013

Practical integration of genomic selection in dairy cattle breeding schemes

A. BOUQUET & J. JUGA

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Introduction

Genomic selection : a revolution for animal breeders

- Big data : information at 1000s of markers for 1000s of animals
- Bigger and bigger data:
 - Huge increase in the number of genotyped animals
 - Denser SNP chips or even sequence data
- Change in the breeding program structures:
 - Reduction in generation intervals
 - More frequent (on-demand) genomic evaluations

In this context, how to make effective selection decisions? In practice, which strategies were implemented?

Outline

- 1. The novel idea underlying genomic selection
- 2. Integrating big genomic data in genetic evaluations
- 3. Impact on the structure of breeding schemes and expected benefits
- 4. Practical breeding strategies for implementing genomic selection across countries

Limits of conventional selection methods

Related animals resemble more than unrelated ones because they share common genetic material (genes, QTL)

Var(G) = Additive relationship matrix * genetic variance

Traditionally, additive relationships estimated from pedigrees

- ⇒ Full sibs without performance have the same estimated breeding values (EBV)
- \Rightarrow Progeny-testing (PT) of bulls necessary before selection to :
 - \Rightarrow Get high EBV accurary
 - \Rightarrow Be able to differenciate between sibs
 - ⇒ But long (5 yrs) and expensive (40 000€ / bull)

Innovative idea underlying genomic selection

Genetic markers (SNPs) used as proxies to detect the QTL mix inherited by an animal from its parents

SNP technology : profiling many animals for thousands of markers in a single analysis

Dense marker maps covering the whole genome:

- Follow the transmission of chromosomic regions across generations
- Strong linkage disequilibrium (LD) between SNPs and QTL
 - \Rightarrow within breed, 1 marker allele strongly associated with 1 QTL allele

Genomic EBV = £ (effects estimated at marker loci)

	-	-	-	-
	5	-	-	-
	-	-	-	-
	-	-	E	-
	-	_	-	-
	1	-	-	-
	١	-	-	-
	ł	-	-	-
	ł	-	-	5
	1	-	-	
	ł	-	-	-
	1	-	-	-
_				
46	13390		5	

Challenges to be faced

Thousands of markers

→ (n<p)</p>

Thousands of animals

Challenges:

- To handle & manipulate the data (storage, quality checks)
- To compute GEBVs (construction & inversion of genomic matrices, genotype imputations...)
- To integrate this flow of information in breeding schemes

Basic principles of genomic evaluation (Meuwissen et al., 2001)

Reference Population with genotypes AND phenotypes used to build prediction equations of genetic merit

 \Rightarrow Usually bulls with daughters

Different methods to estimate GEBV, mainly:

- Genomic-BLUP approach
- Bayesian models

>>> In practice, increase in computing time compared to conventional BLUP

Focus on the G-BLUP approach

<u>2-step approach (Van Raden, 2008):</u>

- Construct the additive relationship matrix based on genotypes the so-called G-matrix (Van Raden, 2008; Forni et al., 2011)
- ⇒ Estimate a genomic value at markers for genotyped animals (DGV)
- \Rightarrow Combine it with pedigree-based EBV to get GEBV

<u>1-step approach (Misztal et al., 2009; Christensen & Lund, 2010):</u>

directly include genotyped and ungenotyped individual in a single relationship matrix H

$$H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{genotyped} \end{bmatrix}^{-1}$$

G-BLUP approach - Computing issues -

Genomic relationship matrix = dense matrix without known structure

Multi-trait analysis of type traits in the USA, time needed for computing GEBV was doubled when including ~7000 genotyped animals (Tsuruta et al., 2011)

New strategies to reduce computations:

- \Rightarrow Directly build an approximate inverse of the G-matrix (Faux et al., 2012)
- ⇒ Strategies to directly update the inverse of the G matrix with only new genotypes (Meyer et al., 2013)

Computing issues

Other efficient approaches were developed to boost computations based on:

- Dimensionality reduction through principal component analysis (Solberg et al., 2009; Macciotta et al., 2009; Long et al., 2011)
- SNP selection (Legarra et al., 2011; Croiseau et al., 2011; Colombani et al., 2011)

Whatever the genomic evaluation approach, high interest in developing high-throughput computing (Wu et al., 2011, 2012; Cole et al., 2012)

- Parallel programming
- Use new hardware: graphical processing units (GPU)

Benefits of genomic selection

Increase in EBV reliability for young candidates without performance (CD ~ 0.25 ' 0.65 for milk production traits in Holsteins)

⇒ GBLUP and Bayesian approaches render similar GEBV reliabilities for real data

Possibility to differenciate young candidates from both sexes on GEBV:

- without own performance or offspring
- both within- and between-families

Impact of implementing genomic selection in dairy cattle

Compared to the PT scheme, selection on a trait with $h^2=0.3$

Scheme	Generation interval	Annual genetic gain	Inbreeding rates		
	L	• G _a *	 F/ generation 	• F / year	
PS	~constant	+ 9 –16%	Reduced	Reduced	
TURBO	halved	+29 –100%	Constant to reduced	Increased (if nb of AI bulls not enlarged)	

>> Advantage of genomic selection schemes larger for low heritability traits

(^{*} Review from Buch et al., 2012; Colleau et al., 2009; Lillehammer et al., 2011; Pryce et al., 2010)

Reasons of the success for TURBO schemes

Increase in • G on the sire-to-offspring genetic pathway :

- reduction in the generation interval
- although reduction in selection accuracy of AI sires
- Increase in G on the dam-to-offspring pathway :
 - Reduction in the generation interval
 - Higher selection accuracy, especially for low heritability trait
 - Less bias in GEBV than EBV: lesser impact of preferential treatments
- Large gains in G when genotyping even small proportion of females (Sørensen and Sørensen, 2009)
 - Strategies needed to optimally allocate genotypes to males / females

Increasing the reference population size

The bigger the reference population, the higher the accuracy of GEBV

- ⇒ Creation of across-country consortia to exchange genotypes
 - 3 main for Holsteins : Eurogenomics (Lund et al., 2010), Consortium USA-Canada-UK-Italy, Consortium Australia-Ireland- NZ(LIC)
 - 1 worldwide consortium for the Brown Swiss (Santus, EAAP 2013)
- \Rightarrow Integration of cows in reference populations
 - \Rightarrow Simulation of the Irish Holstein population (McHugh et al., 2011):

	TURBO	TURBO	TURBO
Ref. Population size	+500 B / yr	+ 500 B / yr + 500 @/ yr	+ 500 B / yr +3 500 @/ yr
Annual • G	0.34 Ã _g (-)	0.37 Ã _g (+9%)	0.49 Ã _g (+44%)
Annual • F	+0.7%	+0.4%	+0.4%

Importance of the reference population design

Optimal design of the reference population when :

- Low relationship among reference sires
- High relationship between reference population and candidates (Pszczola et al., 2012)

Constitution of multi-breed reference populations:

- No increase in reliability with 54K if distant breeds and low heritability (Karoui et al., 2012)
- Would require denser maps to get strong LD between SNP and QTL across breeds (Schrooten et al., EAAP 2013)

Managing the risk of TURBO schemes

At the herd level, use teams of bulls to mitigate the risk of using bulls with poor merit (Schefers and Weigel, 2012)

To curb annual inbreeding rates

- Enlarge the number of young genomic bulls and ensure balanced use of them
- ⇒ Avoid further use of genomic bulls once they have milking daughters, except if strict rules for managing genetic diversity (Colleau et al., 2009)
- Promising results when integrating genomic data in methods for preserving genetic diversity
 - \Rightarrow Selection based on optimal contributions (Sonesson et al., 2010, 2012)
 - \Rightarrow Mate allocation with constraints on progeny inbreeding (Pryce et al., 2012)

Current-state implementation of genomic selection : Holstein breed

	USA	UK	FRA	GER	NLD	AUS	IRL	NZL (LIC)
Ref. Pop. (# of bulls)	~23 000	~23 000	~26 000	~26 000	~26 000	~4 800	~4 800	~4 800
Including cows in the Ref. Pop	Yes, 53 396 @	No	No	No	No	Yes, 8716 @	No	Yes
Genomic evaluation method	2-step BayesA	2-step G-BLUP	BLUP- QTL	2-step GBLUP	2-step Bayesian SSVS ^a	2-step GBLUP	2-step GBLUP	1-step GBLUP

>> Large increase in reference population sizes since Apr. 2011 (Pryce & Daetwyler, 2012)

^a Calus et al., 2008

Current-state implementation of genomic selection : Holstein breed

	USA	UK	FRA	GER	NLD	AUS	IRL	NZL
Nb of genotyped calves / yr	25 000B 135 000@	2500	50 000 3-4000B	12 000 B 6000 @	2500 B 5000 @	580 B 2000 @	NA	NA
Young sires selected /yr	1 000	NA	~ 400	~ 500	20	NA	40	10-15
Organized PT of bulls	Yes	NA	No	No	Yes, 120	Yes	No	Yes
Market-share of genomic bulls	48%	NA	57%	55%	35%	NA	54%	30%

Compared to a 2011 survey (Pryce & Daetwyler, 2012):

>> Large increase in the number of genotyped calved in all countries

>> Ceasing of organized PT in several countries

>> Increase in the market-share of genomic bulls

Conclusion

Breeding schemes are being changed to integrate genomic selection:

- <u>Key drivers</u>: Improvement of the technical & economical efficiency
- New opportunities :
 - improve genetic gain on new traits / traits difficult to select
 - better control of inbreeding rates

Increasing amounts of genotypic information collected through time Need to adapt on several aspects:

- Computing infrastructure (data storage, hardware architecture)
- Computing strategies & programming to gain in efficiency

