Generating large scale on-farm methane measurements in exhaled air of individual cows

Yvette de Haas Johan van Riel, Nico Ogink, Roel Veerkamp


This is what we want a cow to do ...

(4 to 9 hours/day - Hafez & Bouissou, 1975)

... but what also causes problems

Climate change

International concern

- Greenhouse gases (GHG) great contributor
 - Methane (CH₄)
- Reducing GHG emissions
 - Nutrition
 - Microbes
 - Natural variation

How to measure natural variation?

Photos: Anne-Louise Hellwing

Animal breeding

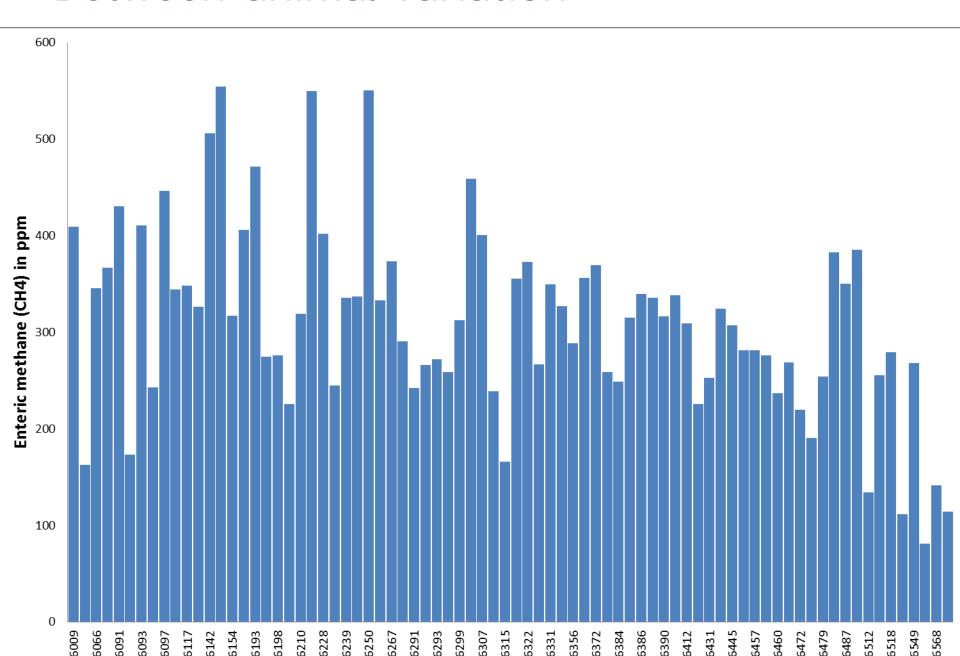
- Successful breeding programs require large datasets of individual measurements
 - Cannot be generated through respiration chambers

Aim of study:

■ To show whether realistic values for and individual differences in enteric CH₄ emission could be measured during milking, so that a large scale data collection can be set up for genetic evaluation of CH₄ production in dairy cattle

Equipment: FTIR in milking robot

Photos: Jan Lassen


Collected data

Collected data on individual methane measurements in Oct-Nov-Dec 2012 at an experimental dairy cow house of the Dairy Campus using a portable Fourier Transformed Infrared (FTIR) gas analyser

		Ra	nge
No. of cows	77		
No. of CH ₄ measurements	87,044		
Mean CH ₄ (ppm)	347	196	1,367
Mean CO ₂ (ppm)	6,380	4,280	14,500

Between-animal variation

Statistical analyses

- $Y = \mu$
 - + lactation month
 - + day
 - + session (3 hours)
 - + CH₄-measurement
 - + animal
 - + day*animal
 - + day*session
 - + day*session*animal
 - + residual

Variance components

Y = log transformed methane output (ppm), or

	CH ₄
Animal	0.065
Day*Animal	0.011
Day*Session*Animal	0.045
Residual	0.277

Variance components

Y = log transformed methane output (ppm), or

Y = log transformed methane output per kg of milk

	CH ₄	CH ₄ /kg milk
Animal	0.065	0.081
Day*Animal	0.011	0.025
Day*Session*Animal	0.045	0.046
Residual	0.277	0.277

The estimated variance components for both methane output traits show that, independent of production level, differences between animals can clearly be indicated with a measuring strategy with an FTIR instrument in an AMS

Conclusions

- Using a portable FTIR measuring unit in a milking robot to measure individual cow methane concentrations gave realistic values and ranges.
- The FTIR instrument combined with a milking robot may therefore be useful to generate large scale data for genetic evaluation of methane production in dairy cattle.

How can we get enough data for genetic evaluations?

METHAGENE

Large-scale methane measurements on individual ruminants for genetic evaluations

- Define best trait for methane emission;
- Harmonise protocols for large-scale methane measurements using different techniques;
- Identify proxies for methane emissions to be used for genetic evaluations; and
- Quantify benefits for producers when incorporating methane emissions into national breeding strategies.

A network of European researchers

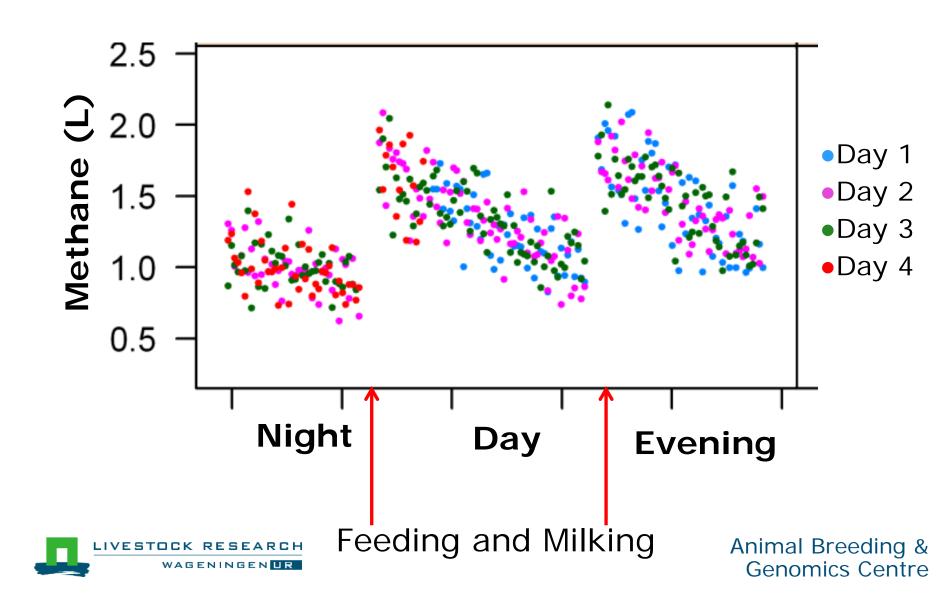
■ 17 Countries

AT; BE; CH; CZ; DE; DK; ES; FI; FR; IE; IT; NL; NO; PL; SE; SLO;

UK

- >50 participants
- >30 institutions
 - Academic
 - Government
 - Industry

Welcome!



Thank you for your attention

Methane production for 1 trial

3 scenarios

- Measuring
 - (1) during milking (i.e. twice daily, for 15 minutes);
 - (2) in concentrate feeder (i.e. 5x per day for 6 min.);
 - (3) in cubicles (i.e. 4 hours continuously).

Scenarios were simulated by omitting samples

Accuracies compared to resp. chambers

Scenario	CH ₄	CH ₄ /CO ₂
During milking	0.85	0.31
In concentrate feeder	0.89	0.33
In cubicles	0.96	0.39