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Flexibility of energy reserves:
a key for animal production
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Flexibility of energy reserves is
controlled by a complex biochemical

network
2

Difficult to be simply unraveled by mind

- Inter-connections between glucose and fatty
acid pathways

- Nutrients, enzyme equipment and
Intracellular/extracellular signals influence the
reaction rates

- Time after each nutrient load (meal) is likely
Important for the type & amount of cell energy
stores



‘ Developing a dynamic mathematical
model to investigate and predict the
plasticity of energy stores

Into animal cells
(adipose cells and muscle fibers)



Metabolism within a cell is a succession of reactions,

Including mass transfers and enzyme activities regulating
reaction rates
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glucose pyruvate

Variables in the model are the concentrations of the different

metabolites
GLC, G6P, F6P, G3P, PYR...

Mathematical laws are ordinary differential equations (dx(t)/dt)
to represent Michaélis-Menten kinetics

Initial conditions are defined GLC (t0), GLYCOGEN (t0)...
There are also constants in the model Glycogen_makx,...

Constants can be changed before each simulation, according to the type of
cell considered:

e.g.; Glycogen_ Max: 8% for liver; 4% for muscle, 0.6% for adipose tissue



The model can be viewed as the superposition of two cells
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Considering a single input of glucose during the first 100 steps
(total =100 units per simulation). Simulation lasts 1500 steps
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Considering a discontinuous uptake of glucose

(25 units by meal, total 4 meals per simulation = 100 units)
5-| ATP need =0

% of susbstrate
[

' 500 ™ = 1000 1500

9 7

8 =

= ATP need = 1 mM/step Glycogen

6 ..

5 Lipids

4 — ’

F ’

2 /’\ ------ .

2 e 5 A .. AL e N b T

0 _Fd- - - «itf T T = T T T T T T T T 1
0Glucose loa 500 ™ = 1000 1500



Model prediction: availability of energy according to number of
meals (glucose) per day
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*» The model is generic and phenomenological

» It allows understanding and predicting

the effects of types (providing different sources of energy:
carbohydrates / lipids) and number of meals on energy reserves
within cells

¢ Different scales can be considered, so that the model allows
Investigating different hypotheses in farm animal production:
© postprandial metabolism and energy use
(= fast dynamics)

© management of energy reserves along animal growth
(= slow dynamics)

By changing ATP requirements and model parameters

e Conclusion



By partitioning energy between priority tissues, lean and other tissues
according to growth stages
(cf existing models such as BeefBox Mecsic, Agabriel et al;
INRA"Porc in pig)

Q
é By introducing cell hyperplasia and hypertrophia
Q Animal Storing lipids into cells during simulation leads to
@ hypertrohy of existing adipose cells until a
£ Tissue i ‘ critical volume (e.g., 90 pm) that induces:
| 1/ new hyperplasia in the same tissue
2/ the recruitment of unfilled adipose cells in

£ ¢ another fat location (then starting hypertrophy

: with a delayed time compared with the first

? location)
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nb(t + 1) = nb(t)(1 + H(LipmaxC - LipC (t)))

* Further development



