Optimization of energy and water consumption in milk cooling on dairy farms

M. Murphy^{1, 2}, J. Upton¹, M.J. O'Mahony²

¹ Livestock Systems Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, ²Department of Mechanical Engineering, Cork Institute of Technology, Bishopstown, Cork

August 2014

Background

- Key factors influencing the future of dairy production in Ireland:
 - Abolishment of European milking quotas in 2015.
 - 50% expansion in milk production due to government Food Harvest 2020 policy (DAFF, 2010).
 - Issues with milk quality relating to lack of cooling capacity.
- Continuous increase in resource costs:
 - 10% increase in electricity price since 2012 (CER, 2012).
 - Roll out of Irish water metering in 2014.

Dairy Farm Energy Audit

Average Component Breakdown of Energy Consumption on Irish Dairy Farms (Upton et al., 2013)

Milk Cooling

Plate Heat Exchanger (PHE)

PHE Audits

Flow rate and temperature logging

VSD frequency logging

Problem Statement

- Rapid milk cooling not being achieved using current start of the art.
 - Problems regarding quality produce and exports.
 - Issue must be addressed as dairy production expansion begins.
- Complete lack of resource control in the milk cooling process.
 - Wastage of water
 - Energy inefficiency
 - Great potential for optimization

Objectives

- To develop a rapid milk cooling control system.
 - Near-instant cooling below 4°C.
 - Load control.
 - Cold Thermal Energy Storage (CTES) required for rapid cooling
- To investigate the potential for electricity and water optimisation.
 - Milk cooling model.
 - Test the apparatus using varying water ratios.

Variable Flow Milk Cooling

- Cold Thermal Energy Storage (CTES) required for both rapid cooling and variable flow milk cooling load.
 - Ice Bank (IB) prototype (full scale) was designed and manufactured.
- To variable milk cooling a dual stage Plate Heat Exchanger (PHE) test rig was developed.
 - Variable speed dual stage PHE pumping system was designed and manufactured.

PHE & Milking Machine Apparatuses

Dual stage PHE Test Rig

Variable Flow Milking Machine

CTES IB System

Ice Bank System

Ice Coil Evaporator

Schematic of the dual plate heat exchanger (PHE) used for instant milk cooling with ground water (GW) used for pre-cooling in the first stage and ice chilled water (ICW) used in the second stage (arrows indicate flow direction

Feed Forward Control Loop

Rapid Cooling Control System

- Feedback (FB) and Feedback-Feedforward (FB-FF) control schemes employed.
- Custom anti-saturation/integral wind-up method developed for variable flow milking machine.
- Eight milk pre-cooling settings (13°C to 20°C, with 1.0 °C increments) used for both controllers.
- Final cooling set point of 3.5°C.
- Energy cost model for varying ground water utilisation.

Controller Comparison Results

Table 1. Results of the performance indicators for the feedback (FB) controller and feedback-feedforward (FB-FF) controller for eight controller settings (S1-S8).

Control	Min Milk	Bulk Milk	Max	RMSE	GW Milk	ICW Milk
Setting	Temp	Temp	Milk	(°C)	Ratio	Ratio
	(°C)	(°C)	Temp			
			(°C)			
S1FB-FF	2.8	3.5	4.3	0.19	5.90	3.34
S1 FB	2.5	3.6	5.5	0.49	5.98	3.41
S2 FB-FF	3.2	3.5	3.9	0.15	4.44	3.85
S2 FB	2.5	3.5	5.3	0.40	4.54	3.86
S3 FB-FF	2.9	3.5	4.1	0.18	3.36	4.14
S3 FB	2.6	3.6	5.1	0.39	3.38	4.34
S4 FB-FF	3.0	3.5	4.3	0.19	2.92	4.49
S4 FB	2.5	3.7	6.0	0.52	2.97	4.62
S5 FB-FF	2.9	3.5	4.3	0.19	2.68	4.66
S5 FB	2.2	3.6	5.8	0.52	2.69	4.79
S6 FB-FF	3.0	3.6	4.6	0.19	2.46	4.83
S6 FB	2.5	3.7	5.8	0.59	2.51	4.92
S7 FB-FF	2.9	3.6	4.5	0.17	2.19	4.99
S7 FB	2.5	3.7	5.9	0.52	2.21	5.03
S8 FB-FF	2.7	3.6	4.5	0.19	1.98	5.11
S8 FB	2.5	3.7	5.8	0.58	2.02	5.19

Variable Flow Cooling Results

Operating characteristics for feedback-feedforward (FB-FF) controller S8. Flow rates (l min⁻¹) of milk, Ground Water (GW) and Ice Chilled Water (ICW) on left axis. Temperature (°C) of outgoing milk and set-point on right axis.

Operating characteristics for feedback (FB) only controller S1. Flow rates (1 min⁻¹) of milk, Ground Water (GW) and Ice Chilled Water (ICW) on left axis. Temperature (°C) of outgoing milk and set-point on right axis.

Varying water cooling costs

Milk cooling cost per litre of milk (€ I/1) with varying water to milk ratios for five different ground water prices

Conclusions

- The rapid milk cooling system is capable of nearinstant milk cooling for a variable flow milking machine using controlled quantities of CTES and water.
- The ability to vary water and electricity consumption opens new opportunities for resource optimisation on dairy farms.

References

- CER. 2012. National Smart Metering Programme (NSMP) Information Paper. Commission for Energy Regulation. Dublin.
- DAFF. 2010. Food Harvest 2020. Department of Agriculture Food And Fisheries, Dublin.
- Upton, J., J. Humphries, P.G. Koerkamp, P. French, P. Dillon, I. De Boer (2013). Energy demand on dairy farms in Ireland. Journal of Dairy Science (In Press).

Thank you