Smart Farming for Europe: Value Creation through Precision Livestock Farming

Daniel Berckmans KU Leuven, Belgium

65th Annual Meeting of the EAAP

25 August 2014 Copenhagen, Denmark

Overview

- What is Precision Livestock Farming (PLF)?
- Examples to create VALUE
- Conclusions

Thank to the M3-BIORES team and our partners

What is Precision Livestock Farming (PLF)?

Today...Automated Systems

Technology can help to quantitatively measure **behaviour**, **health and performance** of animals.

What is Precision Lifestock Farming?

"Management of livestock farming by continuous automated real-time monitoring/controlling of production/reproduction, health and welfare of livestock and environmental impact."

A living organism:

Complex

Individual

Time-Varying

Dynamic

Living organism = CITD - system

Examples of PLF Technology: What is possible today?

Fully automated monitoring

Several sensing techniques can be

Image

3 PEN THREE

Example 1:

Lameness Monitor for cows

i.c.w. Wageningen, The NetherlandsVoLcani Research Institute, IsraelDe Laval, Sweden

Individual lameness detection of cows Experimental setup

- Farm with 1000 cows
- Camera 25 fps
- Resolution: 1920 x 1080 pixels
- 90 cows recorded for 2 months
- 8 cows had lameness evolution

Results: Active Appearance Model

Back posture

Results

Cow	True Positive Rate	False Positive Rate	Accuracy
1	0.93	0.01	0.93
2	0.89	0.22	0.89
3	0.86	0.11	0.86
4	0.91	0.05	0.91
5	1.00	0	1.0
6	1.00	0	1.0
7	0.86	0.08	0.86
8	0.88	0.05	0.88
Total	0.91	0.06	0.91

Dataset	True Positive Rate	False Positive Rate	Accuracy
Group	0.80	0.12	0.80
Individual	0.91	0.06	0.91

Individual threshold can increase the sensitivity with more than 10%

Value:

Example 2:

On-line Pig Sound Analysis

i.c.w. UMIL, Italy
SoundTalks, Belgium
Fancom, The Netherlands

On-line Pig Sound Analysis

Pig cough monitor into a Commercial product

Localize cough sounds and follow the infection front in a house

Using several microphones in a stable, the location of the cough sounds can be determined

[•] M. Silva, S. Ferrari, A. Costa, J.-M. Aerts, M. Guarino, D. Berckmans, Cough localisation for the detection of respiratory disease in pig house. Computers and Electronics in agriculture, 64:286-292.

Main future application: Reducing the use of Antibiotics

M3-BIORES KU LEUVEN

Example 3:

Monitoring of pigs'drinking behaviour

i.c.w. Ughent, Belgium

Monitoring of pigs' drinking behaviour

 Monitoring duration of visits to the drink nipple in a pig pen

 Estimate hourly water use by real-time analyses of drink nipple visits

Model-based monitoring of water use

Model-based detection of visits

Results

Hourly water use can be estimated with an accuracy of 92% or 200 ml over 13 days

Value:

Health

Example 4:

Early Warning System for Broiler Houses

i.c.w. Fancom, The Netherlands

Vision-based Early Warning System for Broiler Houses

- Solution?
- Farmers can use automatic tools to continuously monitor the welfare and health of their broilers

- Detecting malfunctioning in broiler houses
- Produce alarms in real-time when malfunctioning happens (in feeder or drinker lines, light, climate control, etc.)

Farmer logbook and manual video observation as references

Event detection

Measured vs. modelled animal distribution

Detected events in the validation experiment over 42 days

Value:

Value: Summary

Value: For more Stakeholders

Consumer

Companies

Conclusions

- Fully automated and continuous monitoring (25 images/s, 20.000 sound samples/s, 24 h a day, 7 days a week) of animal variables is a reality
- ➤ PLF aims to offer a **management tool** that creates added value for the stakeholders, and meanwhile improves animal welfare, animal health, environmental impact, labour and time, euros (€), and social recognition
- > Value must be created for different stakeholders
- > If the farmer does not get value, the animal will not get it
- Collaboration: "animal people" & "PLF people"

7th European Conference on Precision Livestock Farming - ECPLF 2015, Milan - Italy

15 - 18 September 2015

Organiser: Dr. Marcella Guarino

Thanks for your attention

For more information you can check our website:

http://www.m3-biores.be
Questions

Contact: daniel.berckmans@biw.kuleuven.be