EAAP - session 5: PLF, Copenhagen (DK) 25th of August, 2014

GAITWISE, a walk-over system for automated lameness detection in dairy cattle

Annelies Van Nuffel

Stephanie Van Weyenberg
Bart Sonck
Bart De Ketelaere
Tim Van De Gucht
Koen Mertens
Jürgen Vangeyte
Wouter Saeys

Dairy lameness situation

Negative effect on cow health, welfare, longevity and production High prevalence hugely underestimated

Detect those cows that need extra attention

Dairy lameness situation

Negative effect on cow health, welfare, longevity and production High prevalence hugely underestimated

Detect those cows that need extra attention

Lameness detection

1. Monitoring cow gait

2. Detection algorithm
to allert for changes
in gait relevant for
lameness

Lameness detection

1. Monitoring cow gait

- Alternative for LS
 - → Measuring gaitvariables
 - → More than one gait cycle
- Measuring multiple varibles
- Measuring different types of variables
- Fully automatically and real-time

TIME - LOCATION - FORCE

20 Basic variables

→ Between-imprint gait variables (12)

20 Basic variables

→ Between-imprint gait variables (12)

$$T_{LA-LA}$$
 X_{LA-LA} Y_{LA-LA} T_{LA-RA} X_{LA-RA} Y_{LA-RA} Y_{LA-RA} Y_{LA-RA} Y_{LA-RA} Y_{LA-RA} Y_{LA-RA} Y_{LA-RA} Y_{LA-RA}

→ Within-imprint gait variables (8)

Force LA Force LV Force RV Stance time _{LA} Stance time _{RA} Stance time _{LV} Stance time _{RV}

10 Specific variables

- → Stride length
- → Stride time
- → Stance time
- → Step Overlap
- → Abduction

→ Asymmetry in

Stepwidth

Steplength

Steptime

Stancetime

Force

Gait differences between groups of

Specific variable	Non-lame (39 cow; n=661)	Mildly lame (36 cow; n=126)	Severely lame (42 cow; n=393)	P-value			
Stridelength 🕦		Slower Shorter strides					
Stridetime 🙀							
Stance time			,				
Step Overlap		Less step overlap					
Abduction		More abduction	on				
Asym. Stepwidth							
Asym. Steplength		More asymmetry					
Asym. Steptime							
Asym. Stance time							
Asym. Force							

Stridelength

Stride time

Stance time

Step Overlap

Abduction

Asymmetry in Stepwidth

Asymmetry in Steplength

Asymmetry in Steptime

Asymmetry in Stancetime

Asymmetry in Force

82 %

Reference	NON-lame	MILDLY lame	SEVERELY lame	Sensitivity
NON-lame				81
MILDLY lame				76
SEVERELY lame				88
Specificity	88	85	100	

How to improve the misclassification of mildly lame cows?

Other 'normal' causes of changes in gait variables

→ presentation 5.4 in session 56 on Thursdag (nr 455)

- Look for other variables more suited for detection of mildly lame cows
 - → Variables of gait inconsistency

Variables of gait inconsistency

compare variables between groups of
 non-lame – mildly lame – severely lame cows

Inconsistency in stapwidth
Inconsistenty in steplength ✓
Inconsistenty in steptime
Inconsistenty in stance time✓
Inconsistenty in force

- Two case-control studies (Van Nuffel et al. 2013)

Classification-model 20 Basic variables

+ 20 Inconsistency variables

77 %

Conclusions

&

Suggestions for further development and research

STRENGTHS Gaitwise

- Real-time, automated measurements
- Wide range of variables relevant for lameness
- Validated detection model

Specific variables

Severely lame → Se 88% Sp 100%

Inconsistency variables

Mildly lame → Se 88% Sp 87%

Challenges for further development of Gaitwise

- Reducing cost (downscaling)
- Improve detection of mildly lame cows
 - Testing new or adjusted gait variables
 - Combining Gaitwise data with other data
 - Improve the detection by using individual thresholds

```
→ SILF-project

presentation in session 56

on Thursday
```


Any questions?

Annelies Van Nuffel
Annelies.vannuffel@ilvo.vlaanderen.be

