

HMSeBA or Seleno-hydroxy-methionine: an efficient selenium source for pigs

M. Briens*, M. Jlali, F. Couloigner, P.A. Geraert and Y. Mercier

Adisseo France SAS; *Strasbourg University, France

Selenium: key for the anti-oxidant value of sulphur amino acids

Se: key for selenoproteins

Seleno-protein characterized by a seleno-cysteine

Specific metabolism of selenium and selenoamino acids AA

Se-P: selenophosphate

Adapted from Suzuki et *al.* 2005 and Thiry et *al.* 2012

Why Se-OH-Methionine?

A source of Se-methionine

A source of Se-cysteine

7 treatments x 8 pens x 2 pigs/pen (112 pigs in total)

Gilts of 26.73 ± 3.15 kg BW

NC (no Se added), Sodium Selenite (SS), Seleno-yeast (SY), HMSeBA (SO)

	NC	SS-0.1	SS-0.3	SY-0.1	SY-0.3	SO-0.1	SO-0.3
Se source		Sodium selenite	Sodium selenite	Seleno yeast	Seleno yeast	HMSeBA	HMSeBA
Se supplementation (ppm)	0	0.1	0.3	0.1	0.3	0.1	0.3
Measured Se (ppm)	0.11	0.20	0.38	0.22	0.42	0.21	0.41

Growth Performance after 32 days of supplementation

At d 32, all pigs for blood, liver and muscle (Psoas major) sampling

Total Se concentration in plasma, liver and muscle

Methods

Selisseo

%	Diet
Barley	33.4
Wheat	20.0
Corn	15.0
Soybean meal (48% CP)	8.5
Wheat bran	8.0
Canola meal	6.2
Sunflower meal (36% CP)	2.8
Se free premix	0.55
NE (MJ/kg)	9.48
Protein (%)	15.5

Statistics

- ✓ SAS 9.1.3
- ✓ Relative bioavailability by slope ratio method (PROC NLIN SAS)

Se = $a + a^{\circ} X^{\circ} + b_{S} x (b_{TS} x dose_{SO} + dose_{SY})$

Total Se analysis

- ✓ According to Mester et al., 2006
- ✓ Mineralisation with HN03 & H2O2
- ✓ ICP-MS

Tissue speciation (Se-Met & Se-Cys)

- ✓ According to Bierla et al., 2008
- ✓ Se-Cys is reduced and alkylated to be stabilised
- ✓ Then proteolytic digestion to release free AA, purified by size-exclusion HPLC
- ✓ Quantification of Se-Met and Se-Cys by reversed phase HPLC-ICP-MS
- ✓ HMSeBA was also quantified (Vacchina et al., 2010)

Growth performance

	Treatment								
	NC	SS-0.1	SS-0.3	SY-0.1	SY-0.3	SO-0.1	SO-0.3	SEM	P-value
BW (kg)									
Initial	26.79	26.91	26.84	27.00	26.34	26.76	26.48	0.34	0.81
Final	52.89	53.65	52.22	50.72	52.55	52.58	52.33	0.94	0.51
ADG (kg)	0.831	0.855	0.810	0.761	0.819	0.820	0.813	0.030	0.50
ADFI (kg)	1.834	1.874	1.792	1.734	1.801	1.804	1.788	0.040	0.44
FCR	2.21	2.19	2.21	2.28	2.19	2.20	2.20	0.01	0.78

Under experimental conditions, Se supplementation did not significantly change growth performance

Higher circulating Se with organic Se source

- Similar plasma Se for all diets at 0.1 mg Se/kg
- Increase dietary Se from 0.1 to 0.3 mg Se/kg increases plasma Se content only for organic Se sources (SY and SO)
- At 0.3 mg Se/kg SO had higher plasma Se content than SY

HMSeBA better Se source for improve liver Se content

Se supplementation increases liver Se content

At 0.3 mg Se/kg organic Se source had higher liver Se content than inorganic

At all level, SO allows higher liver Se content than SY

Pigs fed HMSeBA show higher muscle Se deposition

HMSeBA is 100% efficient compared to seleno-yeast and selenite

Inorganic Se is unable to increase muscle Se content

In muscle, selenium from SO was 162% more deposited than SY

HMSeBA is 100% efficient compared to seleno-yeast

- Based on iso-Se-Met (measured values)
 - √ with 100% Se-OH-Met = 100% Se-Met
 - ✓ and 60% Se-Met in selenized yeast

Higher SeCys in tissues with HMSeBA

- Se species depending on the Se supply
 - ✓ SeMet + SeCys allowed 100 % recovery of total Se in all treatments
 - √HMSeBA was not found in the muscle of broilers fed SO diets
 - √HMSeBA allowed a better content of SeCys than Seleno-Yeast

Broiler trial

Take Home Messages

- A new organic selenium source has been developed based on HMSeBA: 100% pure and reliable
- This HMSeBA appears 100% efficient compared to Se-yeasts where Se-Met is the only active part
- HMSeBA was more effective than SY to improve liver and muscle Se deposition in pigs
- HMSeBA is 100% transformed into seleno-amino acids and allowed higher Se-Cys (in Se-proteins) and Se (deposition) in tissues compared to Se-Yeasts, demonstrated in broilers
- Benefits of organic Se in animal nutrition will now be better demonstrated with this pure organic Se source

