

Federal Department of Economic Affairs, Education and Research EAER

Agroscope

Effect of condensed tannins from legumes on nitrogen balance and ruminal fermentation in dairy cows

A. Grosse Brinkhaus, G. Bee, P. Silacci, M. Kreuzer, F. Dohme-Meier

Agroscope, Institute for Livestock Sciences ILS; ETH Zurich Switzerland

25.08.2014, Copenhagen

Background

Sainfoin and Birdsfoot trefoil contain **condensed tannins (CT)**, which form complexes with proteins

→decrease protein degradation in the rumen (Mueller-Harvey, 2006)

Hypotheses

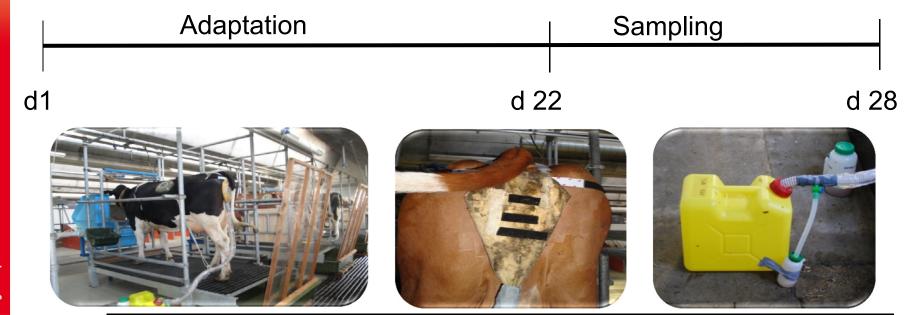
CT in Sainfoin and Birdsfoot trefoil

- Will decrease protein degradation in the rumen by forming complexes and increase the rumen escape protein
- Will **lower the N excretion** in the urine due to lower NH₃ concentrations in the rumen
- Will lower the VFA concentration in the rumen by forming complexes with carbohydrates
- Will change the microbial profile in the rumen by changing the resources for the microbes

Objectives

We wanted to determine the effect of condensed tannins from Sainfoin and Birdsfoot trefoil

1. on the nitrogen (N) balance


2. on ruminal fermentation

in dairy cows

Materials and Methods

Design: 3 x 3 Latin square Sampling days: 23 & 27

Sampling time: 0700 & 1700

Effect of condensed tannins from legumes on nitrogen balance and ruminal fermentation in dairy cows | **Material and Methods** Anja Grosse Brinkhaus

O Materials and Methods milk yield: days in milk: $40 \pm 6 \text{ kg/d}$ $36 \pm 18 d$ Basic diet (hay (41%), maize silage (22%), concentrate (16%), linseed(5%)) + 16% + 16% + 16% **Birdsfoot** Sainfoin (S) Lucerne (L) trefoil (BT)

aroscope

Materials and Methods

Condensed tannin content and composition

	Sainfoin	Birdsfoot trefoil	Lucerne
Total g/kg DM	223	29	-
Extractable	142	11	-
Protein-bound	65	14	-
Fibre-bound	16	4	-

Materials and Methods - collected data

Feed intake Performance

- milk yield
- milk fat
- milk protein

N flow N-balance

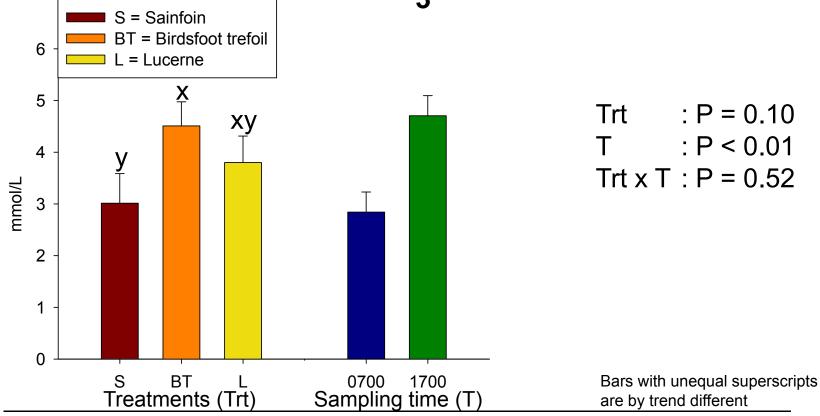
- N in urine
- N in faeces
- N in milk
- urea in blood, milk and urine

Fermentation products

- volatile fatty acids (VFA)
- ammonia (NH₃) in the rumen fluid

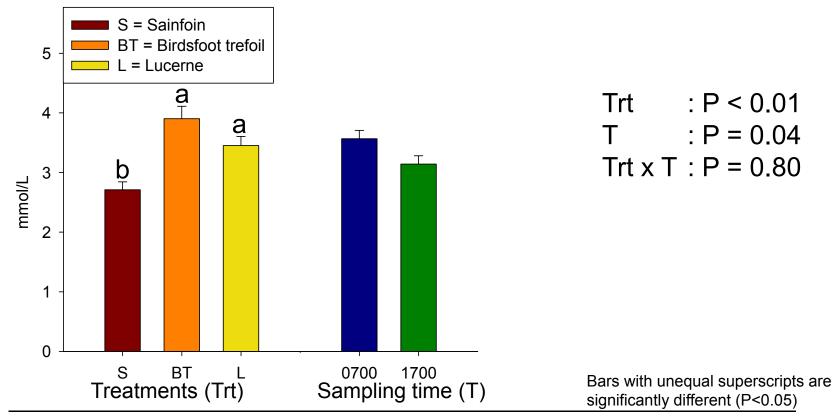
Quantitative determination via qPCR of

- Butyrivibrio fibrisolvens
- Ruminococcus flavefaciens
- Prevotella spp.

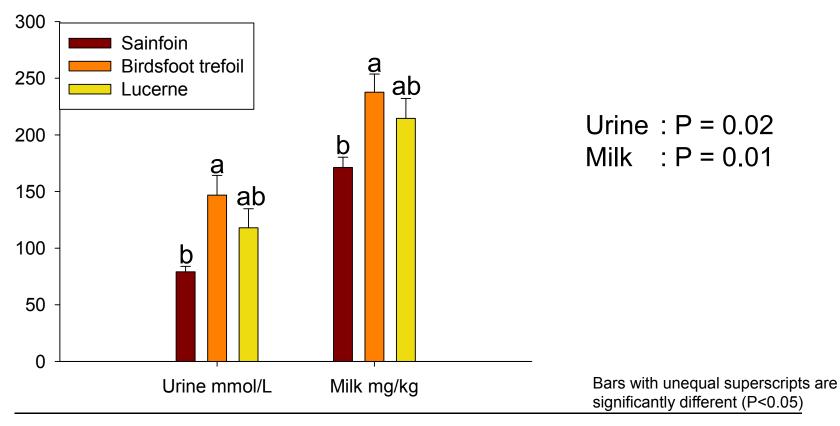

Feed intake and performance

Feed intake and performance of dairy cows (n = 6)

		Birdsfoot	_		
	Sainfoin	trefoil	Lucerne	SEM	P-Value
Total DM intake, kg/d	21.2	21.2	21.6	1.3	0.82
Total intake of CT g/d	754 ^a	107 ^b	n.a.	31.4	<0.01
Milk yield, kg/d	38	37	38	2.5	0.65
Milk fat, %	3.87	3.95	4.00	0.24	0.32
Milk protein, %	2.89a	3.11 ^b	2.96 ^{ab}	0.09	0.02


Means within a row with different superscripts are significantly different (P<0.05)

Concentration of NH₃ in the rumen

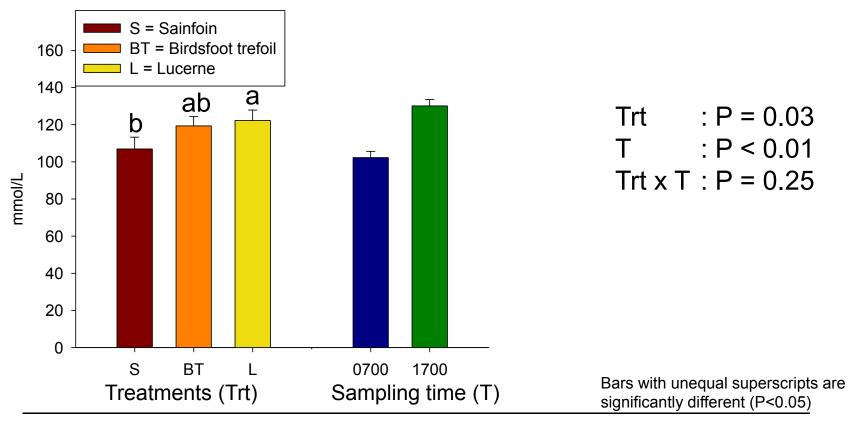


Effect of condensed tannins from legumes on nitrogen balance and ruminal fermentation in dairy cows | **Results** Anja Grosse Brinkhaus

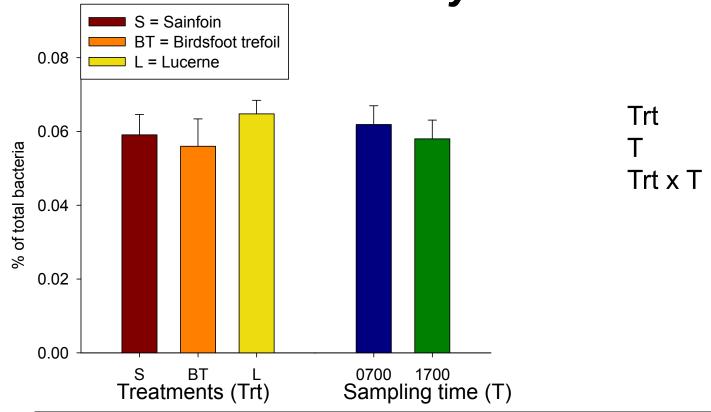
Concentration of urea in the blood

Concentration of urea in urine and milk

N-balance

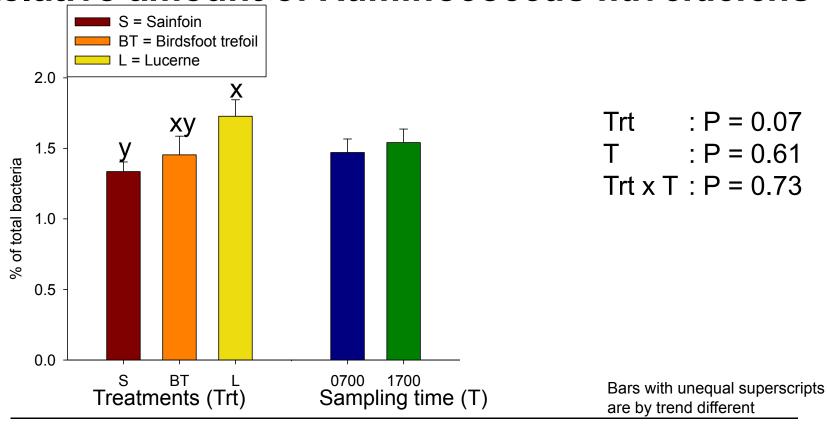

N-balance of dairy cows (n = 6)

	<u> </u>	,			
	Sainfoin	Birdsfoot trefoil	Lucerne	SEM	P-Value
N intake, g/d N excretion	459	493	479	28.7	0.21
in faeces, g/d	207	192	199	28.8	0.28
in urine, g/d	79 ^a	94 ab	98 ^b	8.0	0.04
in milk, g/d	173	179	173	15.9	0.59
total, g/d	458	464	470	41.0	0.65
N retention, g/d	1у	29×	9ху	15.5	0.06

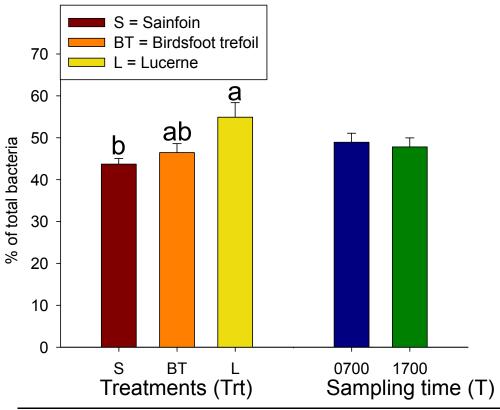

^{a,b}Means within the same row with unequal superscripts are significantly different (P<0.05)

x,y Means within the same row with unequal superscripts differ by trend

Concentration of total VFA in the rumen



Relative amount of Butyrivibrio fibrisolvens



Trt : P = 0.60T : P = 0.59Trt x T : P = 0.83

♥Relative amount of Ruminococcus flavefaciens

Relative amount of Prevotella spp.

Trt : P = 0.02

T : P = 0.72

Trt x T : P = 0.56

Bars with unequal superscripts are significantly different (P<0.05)

Summary and conclusion

Ruminal concentration of NH₃ tended to be lower with SF

→ Decreased protein degradation in the rumen

Lower concentration of urea in blood, milk and urine with SF

→ Potential to reduce metabolic load

Less N excretion in urine and numerically higher N excretion in faeces with SF

- → Additional protein in the duodenum cannot be used
- → Assumed lower environmental load

Lower number of *Prevotella spp.* and *Ruminococcus flavefaciens*, by trend, and lower VFA level with SF

→ Decreased protein and carbohydrate degradation

Acknowledgement

EU Marie Curie Initial Training Network ('LegumePlus'; PITN-GA-2011-289377)

TAnnex I: Ingredients and chemical composition of the diets (mean±SD)

	S	ВТ	L
Ingredients [g/kgDM]			
Hay	408 ± 47.5	391 ± 48.1	417 ± 51.7
Corn silage	224 ± 26.1	215 ± 26.5	229 ± 28.4
Pellets	159 ± 15.4	164 ± 6.68	164 ± 17.5
linseed	47.6 ± 5.54	45.6 ± 5.62	48.6 ± 6.03
Cereal mix	122 ± 64.4	143 ± 62.6	108 ± 63.8
Protein concentrate	37.5 ± 22.7	39.3 ± 18.4	31.8 ± 20.7
Analyzed composition [per kgDM]			
DM	773 ± 2.65	774 ± 3.07	781 ±18.4
OM	932 ± 0.08	929 ± 0.46	928 ± 0.60
CP	139 ± 0.59	149 ± 0.33	142 ± 0.54
NDF	415 ± 4.26	410 ± 5.72	428 ± 7.66
ADF	236 ± 3.13	230 ± 2.15	241 ± 3.29

Annex II: Milk fatty acid composition (g/100g fat)

	S	ВТ	L	SEM	P-value
C16	23.9	24.8	24.1	1.04	0.66
C18	11.8	10.8	10.9	0.71	0.44
C18:1 c9	16.8 ^a	15.7 ^b	16.0 ^{ab}	0.04	0.58
C18:2 c9c12	1.59	1.53	1.55	0.09	0.83
C18:2 c9t11 (mg/g)	4.58	4.65	4.68	0.34	0.97
C18:3 c9c12c15	1.07	0.95	0.95	0.05	0.21
∑ C18:1	21.6a	20.1 ^b	20.8 ^{ab}	0.63	0.03
∑ C18:2	3.15	3.02	3.16	0.14	0.53
∑ C18:3	1.04	1.05	0.94	0.05	0.28
∑ CLA (mg/g)	6.03	6.01	6.19	0.41	0.94

References

Mueller-Harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture. 86: 2010-2037