

Dairy system sustainability in link to grassland access: a case study

Decruyenaere V., Hennart S., Herremans S., Visser M., Grignard A., Jamar D., <u>Stilmant D.</u>

- In Wallonia, 50% of agricultural area are grasslands
- Nevertheless herd size increase and fields dispersion in the territory may limit grazing...
- So farmers and advisers question themselves about the total confinement alternatives

Objectives

To compare, during two seasons, the technico-economical and environmental performances of two experimental dairy herds with similar genetic potential:

Full access to grazed grasslands from May till October

In cowshed all year long

cra-w

Systems description (2010-2012)

		Zero grazing	Grazing maximization
Average herd size	cows	26.5	22.5
Agricultural surface	ha	21.9	19.0
Grasslands		11.7	14.3
Maize		7.8	3.1
Cereals		2.4	1.6
Stocking rate	cows ha ⁻¹	1.21	1.19

- * Prim'Holstein breed
- * Heifers and dry cows graze in both systems
- * Dairy cows diets:

Zero Grazing

Grazing Maximisation

ZG: 7868 kg of milk per cow

GM: 7286 kg of milk per cow (NS; p = 0.29)

Season effect (p=0.04) with a huge interaction season*system (p<0.01)

No season effect for ZG system but well in GM one : first season (May till July) leads to better performances...

Animal health

* No effect of the system on fertility parameters (P > 0.05) excepted for the delay between calving and first insemination (69 vs 79 days in ZG vs GM, respectively; p = 0.02)

* No effect on mastitis occurrence and impact

* Feet health, one important cause of culling, improved in GM: barn with deep litter excepted in front of the feeding place where slurry is scrapped regularly during the day

Source : Vetvice, PTC+, Gezondheidsdienst voor Dieren

% of the herd with feet problem (Mortellaro's disease)

Mineral balances

2010-2011	ZG	GM
Nitrogen (kg*ha ⁻¹ *y ⁻¹)	133	154
Phosphorus (kg*ha ⁻¹ *y ⁻¹)	9	24
Potassium (kg*ha ⁻¹ *y ⁻¹)	106	101
2011-2012		
Nitrogen (kg*ha ⁻¹ *y ⁻¹)	93	108
Phosphorus (kg*ha-1*y-1)	3	13
Potassium (kg*ha-1*y-1)	91	107

- * P balance: 3 to 4 times \(\gamma\) in GM system: P of the slurry has to be take into account in a better way in fert. scheme
- → Lower N balances than observed in commercial farms of the DAIRYMAN network with, in average, 175 and 165 kg N ha⁻¹ for ZG (n = 27) and GM (n= 46) farms, respectively
- For P balances, these values were, respectively, of 7.5 and 0.6 kg P ha^{-1} for ZG (n = 27) and GM (n= 46) farms

GHG

GWI
1 140

kg CO ₂ eq*ha ⁻¹	10 700	8550
--	--------	------

→ These balances, based on TIER 2 methodology, don't take into account C sequestration in grassland soil → advantage of GM would be accentuated

Economics

Higher feeding costs in ZG system linked to:

- Higher cropping cost;
- Higher concentrates dependency

Conclusions

- Zootechnical:
 - No significant difference between the two systems but a more stable production in total confinement
- Economy:
 - Less production cost in grazing maximization system
- Environment :
 - Better mineral balances with the total confinement
 - But less GHG emission with pasture

More advantages to the grazing system nevertheless...

Conclusions (2)

- Some points are missing to evaluate the global sustainability of the system:
 - Fatty acids profile;
 - Workload evaluation and characterisation in terms of farmer satisfaction;
 - •
- Some factors may limit grazing adoption :
 - Fields distribution in the territory in connection to farm location;
 - Climatic constraints;
 - Technicity of grassland management in order to offer a feed quality as constant and high as possible all year long;
- But some factors may also limit zero grazing adoption :
 - Huge investments
 - Input dependency
 - → Both negatively impacting system resilience in unstable economical context (input cost increase, ...)...

Perspectives

- Comparison of more contrasted systems
 - Higher stocking rate in ZG than in GM scheme;
 - Systems with bigger herd size

•

→ Comparison of commercial farms performances for both these contrasted systems of production

