# The effect of gradual weaning on haematological profiles and leukocyte relative gene expression levels of Holstein-Friesian and Jersey bull calves

D. Johnston<sup>1,2</sup>, D.A. Kenny<sup>1</sup>, S.M. Waters<sup>1</sup>, M. McCabe<sup>1</sup>, A. Kelly<sup>2</sup>, M. McGee<sup>1</sup> and B. Earley<sup>1</sup>

<sup>1</sup>Animal & Grassland Research and Innovation Centre, Teagasc, Dunsany, Co. Meath.

<sup>2</sup>University College Dublin, Belfield, Dublin 4.



\* Correspondence; dayle.johnston@teagasc.ie





#### Introduction



Haematological profiles and leukocyte gene expression levels are influenced by the stress response generated due to abrupt weaning in suckler calves (O'Loughlin *et al.*, 2011).

- Objectives: (i) to examine the effect of breed and plane of nutrition, on haematological profiles and
  - (ii) to examine the effect of breed, on leukocyte gene expression,

in artificially reared Holstein-Friesian and Jersey calves in response to gradual weaning.





#### **Material and Methods**



Spring 2013 - study conducted at Teagasc Grange.

Purebred Holstein-Friesian (H-F) (N = 44) and Jersey (J) (N = 29) bull calves (age = 27 days ± 9) were blocked, within breed, on the basis of live-weight, age and sire to one of three planes of nutrition.

Calves were offered milk-replacer and concentrate using an electronic feeding system

(Forster-Tecknik SA 2000, Engen, Germany).

 Calves were offered a token quantity of chopped straw during the peri-weaning period.



| Calf<br>breed |  | Volume and quantity of milk replacer | Concentrates | Target average daily gain to weaning |
|---------------|--|--------------------------------------|--------------|--------------------------------------|
| H-F           |  | <b>8.0 L</b> (1200g)                 | Ad libitum   | 1000g                                |
| H-F           |  | <b>6.0 L</b> (800g)                  | Max 1.5kg    | 700g                                 |
| H-F           |  | <b>4.0</b> L (500g)                  | Max 1.0kg    | 500g                                 |
| J             |  | <b>6.0 L</b> (800g)                  | Ad libitum   | 700g                                 |
| J             |  | <b>4.0 L</b> (500g)                  | Max 1.5kg    | 500g                                 |
| J             |  | <b>3.5 L</b> (350g)                  | Max 1.0kg    | 300g                                 |



- Weaning calves consuming 1kg of concentrate/day for 3 days.
- After weaning, concentrate allowances were adjusted.

| Plane of Nutrition | Holstein-Friesian | 180 | Jersey |       |
|--------------------|-------------------|-----|--------|-------|
| High               | Ad libitum        |     | Ad lii | bitum |
| Medium             | 2kg               |     | 1.7    | 7kg   |
| Low                | 1.7kg             |     | 1.4kg  |       |

- On d-14, -6, -3, 0, 1, 3, 8, and 14 relative to weaning (d 0), all calves were blood sampled for subsequent haematological analysis using an ADVIA 2120 analyser.
- Blood was collected on d -14, 1, and 8 for relative gene expression studies.
- Data were analysed using repeated measures mixed models ANOVA (MIXED procedure of SAS v 9.3).





### Results: Mean daily energy intake

|            |       | UFL pre-<br>weaning | UFL post-<br>weaning | UFL (d -13 to d<br>14) |
|------------|-------|---------------------|----------------------|------------------------|
| Dungad     | HF    | 1.97 <sup>a</sup>   | 2.35                 | 2.16                   |
| Breed      | J     | 1.72 <sup>b</sup>   | 2.08                 | 1.98                   |
|            | se    | 0.04                | 0.11                 | 0.07                   |
| Feed level | High  | 2.27 <sup>a</sup>   | 3.56ª                | 2.85 <sup>a</sup>      |
|            | Med   | 1.80 <sup>b</sup>   | 1.68 <sup>b</sup>    | 1.87 <sup>b</sup>      |
|            | Low   | 1.47 <sup>c</sup>   | 1.41 <sup>b</sup>    | 1.50 <sup>c</sup>      |
|            | se    | 0.05                | 0.14                 | 0.08                   |
| P values   | Breed | <.001               | 0.10                 | 0.07                   |
| · varaes   | Feed  | <.0001              | <.0001               | <.0001                 |
|            | BxF   | 0.50                | 1.00                 | 0.64                   |

<sup>&</sup>lt;sup>a,b</sup> Within a column, means not having a common superscript differ significantly (P < 0.05). Data were analysed using SAS/STAT 9.3 (SAS Inst. Inc., Cary, NC, USA). The differences between means were tested using the Tukey-Kramer test for multiple comparisons.



# **Results: Average Daily Gain**



|          |       | ADG pre-<br>weaning | ADG post-<br>weaning | ADG from d -13 to d<br>14 |
|----------|-------|---------------------|----------------------|---------------------------|
| Breed    | HF    | 0.68 <sup>a</sup>   | 0.95 <sup>a</sup>    | 0.88 <sup>a</sup>         |
| Diccu    | J     | 0.60 <sup>b</sup>   | 0.68 <sup>b</sup>    | 0.67 <sup>b</sup>         |
|          | se    | 0.02                | 0.04                 | 0.03                      |
| Feed     | High  | 0.71 <sup>a</sup>   | 0.97 <sup>a</sup>    | 0.86ª                     |
| level    | Med   | 0.62 <sup>b</sup>   | 0.75 <sup>b</sup>    | 0.78 <sup>a</sup>         |
|          | Low   | 0.59 <sup>b</sup>   | 0.71 <sup>b</sup>    | 0.68 <sup>b</sup>         |
|          | se    | 0.03                | 0.05                 | 0.04                      |
| P values | Breed | 0.01                | <.0001               | <.0001                    |
|          | Feed  | 0.02                | <.01                 | 0.01                      |
|          | BxF   | 0.73                | 0.96                 | 0.31                      |

<sup>&</sup>lt;sup>a,b</sup> Within a column, means not having a common superscript differ significantly (P < 0.05). Data were analysed using SAS/STAT 9.3 (SAS Inst. Inc., Cary, NC, USA). The differences between means were tested using the Tukey-Kramer test for multiple comparisons.



### **Monocyte Number**



- Breed  $\times$  time interactions were observed (P < 0.01).
- Monocyte number differed initially and throughout the weaning period.
- Monocyte number converged between the breeds from d 1 post-weaning.











- The breeds did not initially differ.
- Following the onset of gradual weaning J calves had a greater number of lymphocytes throughout both the weaning and post-weaning periods





# Red Blood Cell (RBC) Number





There was no difference at d 14 between breeds.





# Haemoglobin



- Breed × time interactions were observed (P < 0.05).</p>
- J calves had greater concentrations of haemoglobin, except on d -6 and d 6.







# **Haematological Results**



- There were no breed × plane of nutrition interactions (P > 0.05) observed.
- Neutrophil number was greater in Holstein-Friesian compared to Jersey calves (P ≤ 0.05).
- Haematocrit percentage was greater in J compared with H-F calves (P ≤ 0.05)
- Plane of nutrition did not affect haematological profiles (P > 0.05).





#### **Leukocyte Relative Gene Expression**

- A subset of calves from each breed consuming 6 I MR were randomly selected for gene expression profiling.
- Blood samples were collected on d -14, 1, and 8, relative to weaning.
- Real-time qPCR was used to measure gene expression of CXCL8, GRα, Fas, TLR4 and TNFα.









#### **Gene Expression Results**



- No effect of breed on average daily gain.
- No breed × sampling time interaction for any immunological genes (P > 0.05).
- Relative gene expression levels were higher (P  $\leq$  0.05) in J calves for *CXCL8* (fig 1) and *GR* $\alpha$  (fig 2).



**Fig. 1.** Effect of breed on expression of  $GR\alpha$ .

Fig. 2. Effect of breed on expression of CXCL8



#### **Gene Expression Results**



Relative gene expression of *Fas* increased between d -14 and d 1 and decreased between d 1 and d 8





#### **Conclusion**

- The haematological profiles suggest a differential biological response to gradual weaning between Holstein Friesian and Jersey calves.
- Plane of nutrition had no effect on haematological profiles.
- An immune response to gradual weaning was observed as *Fas* expression changed over time.
- Increased levels of transcripts for CXCL8 and  $GR\alpha$  suggests that Jersey calves may have a more sensitive immune system.







#### **Acknowledgements**

#### **Funding support**

EU-PLF (311825) DAFM RSF 11/S/116



Post-graduate students, Technical and Farm staff who assisted with the study









#### **Acute Phase Protein: Haptoglobin**



Haptoglobin concentration was measured using an automatic analyser (Olympus AU 400 Analyser) and a commercial assay kit (Tridelta Development Ltd)

- Breed × time interactions were observed (P < 0.05).</li>
- H-F calves had greater plasma haptoglobin concentrations up until d 8 post-weaning.



