Biopara-Milk: a whole cow simulation model for the prediction of rumen pH

Virgilio Ambriz-Vilchis Roy Fawcett Dr Darren Shaw Dr Alastair Macrae Dr Neil Jessop BPM
www.bioparametrics.com
Feeding Ruminants Correctly

Monday 25th August 2014 Annual Meeting of the EAAP Copenhagen - Denmark

Introduction

New technologies.

- Measure physiological, behavioural and production parameters
- Animal health and welfare

Mathematical modelling is a helpful tool:

- Simulate feeding strategies and their impact on performance
- Describe the complexity of the rumen

Photos from:

http://www.ecow.co.uk/wp-content/uploads/2011/07/Brochure-2010.pdf http://www.hoards.com/IB Dairymaster MooMonitor Best Heat Detection System Worldwide

Simulation models in Ruminant Nutrition

Biopara-Milk developed by Bioparametrics Ltd.

- Mechanistic whole cow model
- It includes a simulation of the entire digestive system
- Predicts the impact of feeding strategies on
 - Performance
 - Circadian pH

Jessop and Herrero (1996); Emmans (1997); Friggens et al., (2004); Gordon and Illius (1996); Djikstra et al (2012) Mertens and Ely (1979); Rymer and Givens (1998) Kohn and Dunlap (1998)

Biopara-Milk principles

Ration formulation programme

- Simulation model
- Rumen function and Microbial growth
- Feed digestion lag and fermentation rates (in vitro gas production technique)
- Predictions based on 6min simulation model outputs
 - Milk yield
 - Feed intake
 - Rumen pH

Jessop and Herrero (1996); Emmans (1997); Friggens et al., (2004); Gordon and Illius (1996); Djikstra et al (2012) Mertens and Ely (1979); Rymer and Givens (1998) Kohn and Dunlap (1998)

How does Biopara-Milk predict pH?

pH is calculated from bicarbonate concentration in the rumen (Kohn and Dunlap, 1998)

- Bicarbonate production
 - Bicarbonate from saliva (rest, eating and ruminating)
 - Dietary input
 - Absorption of VFA = bicarbonate production from CO₂
- Bicarbonate usage
 - Hydrogen production or consumed from diet neutralise bicarbonate
 - VFA and lactic acid production determined by feed consumed
 - Bicarbonate flux with solid and liquid passage

Intra-ruminal boluses

- Detailed and reliable information
 - Record pH dynamics accurately
 - pH every 15min (variable)
 - Size (27mm x 115mm)
 - Data storage/download
- Do not compromise animal performance

Mottram (2008, 2012) Phillips et al. (2010)

To compare rumen pH predictions from Biopara-Milk against those obtained with rumen pH boluses in lactating dairy cows.

On-farm trial

Trial at Langhill dairy farm R(D)SVS
The University of Edinburgh

- Two weeks to adapt to facilities, measurements recorded in week three
- Each cow was administered an intra ruminal bolus

Inputs to run Biopara-Milk:

Feed and forages

- Diet composition
- Chemical characteristics
- Degradation parameters
 - *In vitro* gas production

Energy				
D value (% DM) predicted by gas production			72.0	
Metabolisable Energy (ME as MJ/kg E			11.5	
Fermentable ME (FME as MJ/kg DM)			9.1	
FME/ME			0.79	
Oil (% DM)			3.6	
Total Carbohydrate (TCHO as % DM)			66.7	
Acid Detergent Fibre (ADF as % DM)			24.0	
Neutral Detergent Fibre (NDF as % D	M)		42.7	
Total Starch (% DM)			0.0	
In vitro Degradability Characteristics				
		Amount	Fractional Rate	Lag time
		(% DM)	(/h)	(h)
	Sugar	10.4	0.523	
	Other Quickly Degraded CHO	13.6	0.185	
	Quickly Degraded Starch	0.0	0.000	
	Slowly Degraded Starch	0.0	0.000	0.0
	Fermentable NDF	33.3	0.065	3.5
Protein				
Crude Protein (CP as % DM)			14.4	
In vitro Degradability Characteristics				
		Amount	Fractional Rate	Lag time
		(CP fraction)	(/h)	(h)
	Quickly Degradable Protein (a)	0.37	0.297	
	Slowly Degradable Protein (b)	0.58	0.070	2.3
Effective Rumen Degradable Protein at 0.08/h (eRDP as CP fraction)			0.51	
Undegradable Protein at 0.08/h (UDP as CP fraction)			0.44	
Ammonia (g/kg DM)			1.76	
A				

Inputs to run Biopara-Milk:

Animal characteristics

- Production parameters
 - Body weight
 - Body condition score
 - Lactation number
 - Week of lactation
 - Milk potential
 - Milk yield
 - Milk composition
 - Feeding behaviour

Inputs to run Biopara-Milk

Feeding behaviour

 Analysis of cow behaviour from video recordings

Results

- Data from 9 cows
 - pH data
 - Feeding behaviour
 - Cow details
 - Feed/forage composition
- pH data from Biopara-Milk predictions
- Statistical Analysis
 - Limits of Agreement method
 - Concordance Correlation Coefficient

Comparison by cow 12:00 AM 8:00 AM 4:00 PM 1

Figure 1 Circadian pH obtained with Biopara-Milk® and by intra ruminal boluses for each cow.

Differences between predicted and observed rumen pH

Figure 2 The limits of Agreement method with multiple observations per individual.

Hourly average of predicted and observed rumen pH??

Figure 3 Pooled data of rumen pH per hour for all cows obtained with Biopara-Milk and the rumen pH boluses.

Feeding behaviour

www.bioparametrics.com Feeding Ruminants Correctly

Figure 4 Circadian pH obtained with Biopara-Milk and by intra ruminal boluses for each cow the yellow arrows represent meal patterns

Conclusions

- Given an accurate description of the animals and the feed consumed, Biopara-Milk is capable of accurately predicting pH dynamics in dairy cows
 - The limits of Agreement (0.02 pH) and the concordance correlation coefficient (CCC=0.85) showed minimal differences between predicted and actual rumen pH

Implications

- Testing Biopara-Milk on different feeding regimes and feedstuffs
- Using different feeding patterns
- Improving accuracy of rumen pH predictions will benefit ration formulation for dairy cows
- Biopara-Milk can be used to test different feeding regimes and the effects they have on rumen pH before they are applied on-farm

Thank you for your attention

www.bioparametrics.com Feeding Ruminants Correctly Knowledge Transfer Network

Biosciences