KU LEUVEN

Assessing the drinking behaviour of individual pigs using RFID registrations

J Maselyne, I Adriaens, T Huybrechts, B De Ketelaere, S Millet, J Vangeyte, A Van Nuffel, W Saeys

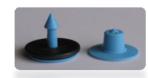
Why measure drinking behaviour?

2

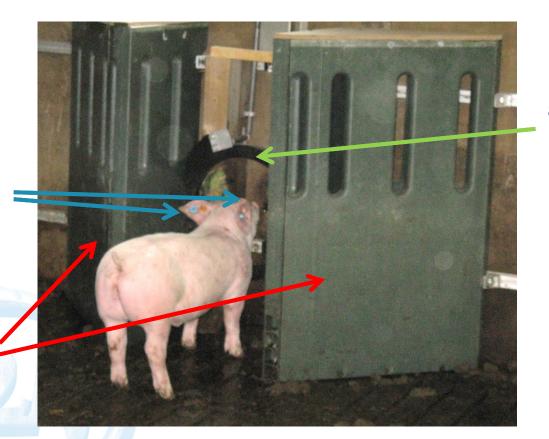
Automatically monitor drinking behaviour

Reveal health, welfare, productivity problems e.g. diarrhea (Madsen & Kristensen, 2005)

- \rightarrow fast farmer intervention
- \rightarrow \bowtie economic losses
- \rightarrow \bowtie antibiotics use
- \rightarrow happier, healthier pigs
- \rightarrow sustainable agriculture


Precision Livestock Farming on individual level!
Aim to more accurate, early detection of problems

jarissa.maselyne@ilvo.vlaanderen.be


KU LEUVEN

How to measure drinking behaviour?

HF RFID ear tags

Block other pigs from being in range of the antenna

HF RFID antenna around the nipple

 \rightarrow Identification of ear tag of pig when close to the antenna & nipple (Maselyne et al, 2014)

jarissa.maselyne@ilvo.vlaanderen.be

Validation of new sensor system

Validate RFID system using live observations:

+

- 55 focal pigs, age 20-21 weeks
- 4 nipples, 6 hours observed
- 1st & 3rd of October 2013
- nipple 1&2 in the morning, nipple 3&4 in the afternoon

Validate RFID system using flow meters per nipple

• 1st of October 2013

Construct RFID based drinking bouts

Registrations need to be clustered

 Bout criterion: max gap between registrations to be part of the same drinking bout → 11s

- Minimum duration of a drinking bout $\rightarrow 2s$
- Maximum duration of a drinking bout \rightarrow 180s

Results bout criteria

These criteria gave minimal difference between number and duration of observed and RFID based bouts (from the criteria tested):

	Observed	RFID based	Deviation
Number of bouts	401	443	+10%
Total duration of drinking	177.6 min	211.7 min	+19%

Number of drinking bouts per observation time						
Comparison	# overlap	# obs	# RFID	# flow	% overlap	
		surplus	surplus	surplus		
Obs – RFID	390	11	65	Х	97.3%	
Obs – flow	188	13	Х	23	93.5%	
RFID – flow	307	Х	40	4	98.7%	

	Duration (min) of drinking bouts per observation time						
	Comparison	Duration	Duration	Duration	Duration	% overlap	
		overlap	obs surplus	RFID	flow		
				surplus	surplus		
6	Obs – RFID	174.1	3.5	21.1	Х	98.0%	
	Obs – flow	89.8	1.9	Х	2.5	97.9%	
	RFID – flow	71.7	Х	14.1	0.7	99.1%	

Number of drinking bouts per observation time					
Comparison	# overlap	# obs	# RFID	# flow	% overlap
		surplus	surplus	surplus	
Obs – RFID	390	11	65	Х	97.3%
Obs – flow	188	13	X	23	93.5%
RFID – flow	307	Х	40	4	98.7%

Surplus RFID based bouts: due to pigs lying, sitting or standing near the nipples without drinking.

Surplus RFID compared to observed and to flowmeter are mostly the same bouts \rightarrow flowmeter-data can improve RFID based bouts.

Number of drinking bouts per observation time					
Comparison	# overlap	# obs	# RFID	# flow	% overlap
		surplus	surplus	surplus	
Obs – RFID	390	(11)	65	Х	97.3%
Obs – flow	188	13	Х	23	93.5%
RFID – flow	307	Х	40	4	98.7%

Bouts missed by the RFID system: due to transponders orientation not favorable for detection during that visit.

(Maselyne et al, 2013b)

Number of drinking bouts per observation time					
Comparison	# overlap	# obs	# RFID	# flow	% overlap
		surplus	surplus	surplus	
Obs – RFID	390	11	65	Х	97.3%
Obs – flow	188	13	Х	23	93.5%
RFID – flow	307	Х	40	4	98.7%

Overlap between observation and flowmeter is not 100%: due to lack of synchronization, observation errors and suckling instead of drinking

Regressions

Estimate water volume consumed (proven indicator for problem detection)?

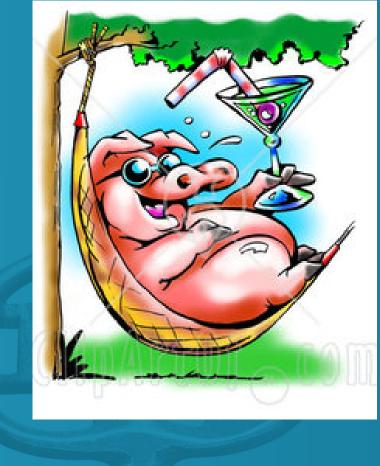
Variables tested for linear regression with volume of water consumed	R ²
Total duration of RFID based bouts	0.87
Number of RFID based bouts	0.49
Mean duration of RFID based bouts	0.29
Total duration of flow based bouts	0.98

- Total duration of RFID bouts could be good indicator.
- Using also flow meters water volume can be measured directly.

Discussion & conclusion

- Overlap between RFID based drinking bouts & observed was high, but overestimation of number & duration
- \rightarrow proposed RFID system could be sufficient
- \rightarrow total duration of RFID bouts could be useful variable
- Adding flowmeter data could improve the system
- \rightarrow increases complexity & cost
- → water-volume consumed is known

Both RFID system alone & two-sensor system will be investigated further


Discussion & conclusion

 Criteria were necessary to turn registrations into bouts
→ max duration criterion was important for reduction of nondrinking RFID registrations

 \rightarrow effect of age, production system, group size on optimal criteria is not known

 For health monitoring: construction of time series of individual pigs drinking behaviour becomes possible
→ changes in this behaviour can indicate problems

Thank you for your attention!

jarissa.maselyne@ilvo.vlaanderen.be

