KU LEUVEN

Agricultural Research Organization (ARO) Israel

Sensor-based monitoring of post-calving cows in a robotic dairy farm

M. Steensels, C. Bahr, D. Berckmans, A. Antler, E. Maltz and I. Halachmi

Outline

- Aim
- Why post-calving diseases?
- Why in robotic dairy farm?
- Material & Methods
- Results
- Discussion
- Conclusion

Aim

Agricultural Research Organization (ARO) Israel

 Apply a behaviour and performance based disease detection model for post-calving cows in a robotic dairy farm

Why post-calving diseases?

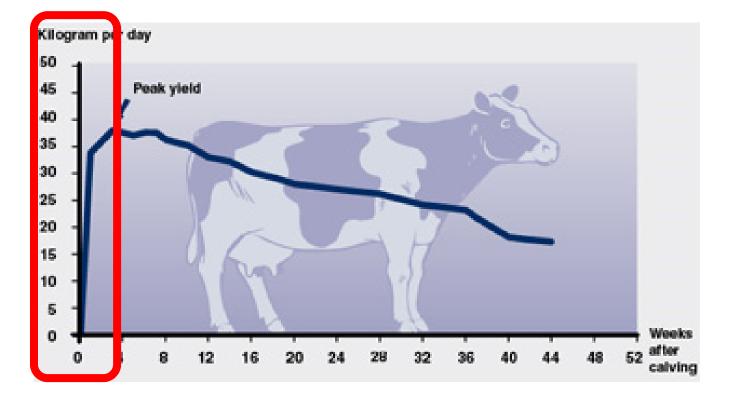
• Prevalence

10 to 50 % of cows ketosis and/or metritis

Agricultural Research Organization (ARO) Israel

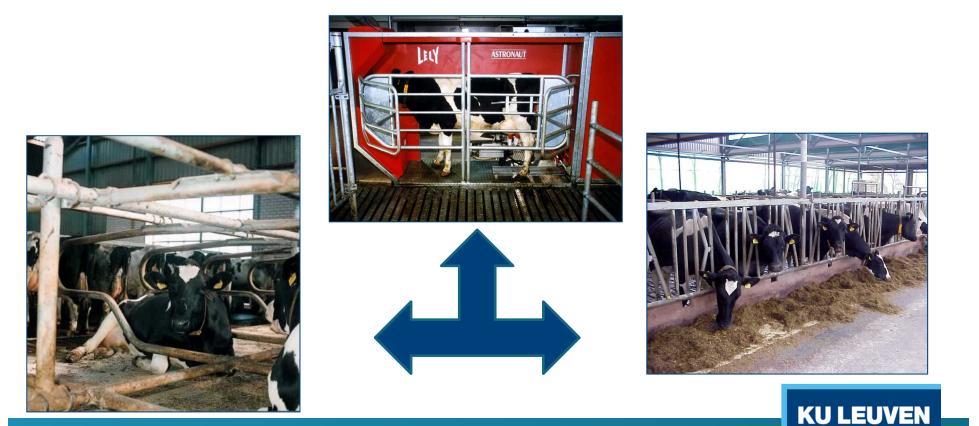
Why post-calving diseases?

- What is:
 - Ketosis?
 - Metabolic disorder
 - Metritis?
 - Inflammation of the uterus
- Diagnosis
 - $_{\circ}$ Veterinarian \rightarrow routine check


Agricultural Research Organization (ARO)

Why post-calving diseases?

- Early lactation: 3 weeks after calving
- Causes



Agricultural Research Organization (ARO) Israel

Why in robotic dairy farm?

• Cows 'choose' how to spend their time

Why in robotic dairy farm?

• But: Fetching cows disturbs routine

Agricultural Research Organization (ARO) Israel

Why in robotic dairy farm?

Agricultural Research Organization (ARO) Israel

- Availability of sensors
 - o Milk yield
 - Body weight
 - Visits to the robot
 - Rumination time
 - \circ Activity

0 ...

Material and Methods

Commercial robotic dairy farm

Agricultural Research Organization (ARO) Israel

- 250 Israeli-Holstein cows
- 5 milking robots behaviour and performance sensors

-Milk yield -Body weight -Visits to the robot

-Rumination time -Activity

TVH3 DO you have pictures or give a description of the sensors. Which behaviour is being mesured? which performance? Van Hertem, Tom, 23/08/2014

Model calibration

Agricultural Research

Israel

KU LEUVEN

Organization (ARO)

- All post-calving diseases 5-21 DIM
- Variables: Milk yield, rumination time, activity, body weight relative to body weight at calving, number of milkings
- Model development with historical data (1 year)
- Tree Based Model cut-off threshold 0,5

Calibration		Reference = Veterinarian			
Model	N = 111	Healthy	Sick		
	Healthy	72	5	0.94	
	Sick	4	30	0.88	
		0.95	0.86	0.91	

Model validation

Agricultural Research Organization (ARO) Israel

KU LEUVEN

Cows divided into 2 groups – Two validations:

- Validation I:

Model is followed - cows only brought to veterinarian when model indicates disease

- Validation II:

All cows checked by veterinarian, data fed to model and compared to diagnosis of veterinarian

Validation I

• Every Sunday:

- Model check of cows 5-21 days after calving
- $_{\circ}$ List of cows at risk for disease \rightarrow to farmer
 - Cut-off threshold = 50% chance of being ill
- Veterinarian check

Validation I: Preliminary results

Agricultural Research Organization (ARO) Israel

KU LEUVEN

 \circ 34 cows

		Diagnosis of veterinarian		
		Healthy	III	
Model outcome	Healthy	17	1	0,85
	III	3	13	0,93
		0,85	0,93	0,88

• Veterinarian confirms model outcome

Validation II: Preliminary results

 Behaviour and performance data are fed to model and compared to the diagnosis of the veterinarian

Agricultural Research Organization (ARO) Israel

KU LEUVEN

• **31 cows**

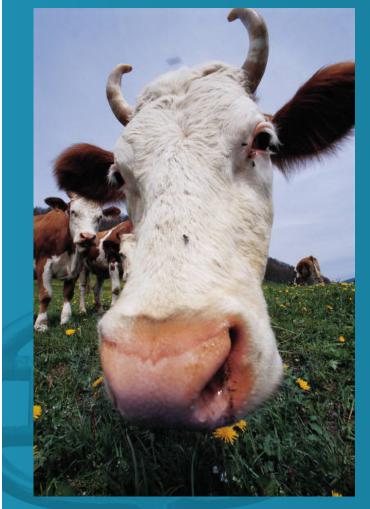
		Reference = veterinarian		
		Healthy	III	
Model outcome	Healthy	9	10	0,47
	III	4	8	0,67
		0,69	0,44	0,55

• Model ≠ reference (veterinarian)

Discussion

Agricultural Research Organization (ARO)

- Severe moderate light cases of ketosis / metritis
- Model = tool, farmer = decision (e.g. risk cows)
- Separating only part of the cows for the veterinary check
 - \circ Time saving
 - Less disturbance for cows
- - Now model is only compared with the day of the diagnosis of the veterinarian → too early or too late to detect problem?


Discussion

• Imbalance in parity

- Disease prevalence is different in younger and older cows
- Future research:
 - Consequences
 - Fertility
 - Culling rate
 - Milk yield
 - Labour

Conclusions

Agricultural Research Organization (ARO) Israel

Combine existing robotic milking farm data → develop and validate treebased model → detect post-calving health problems

Thank you!

- Machteld.Steensels@biw.kuleuven.be
- halachmi@volcani.agri.gov.il
- emaltz@volcani.agri.gov.il

Funding: Industrial Research Fund (IOFHB/13/0136) of the Flemish Government, Israeli Agricultural Ministry Chief Scientist Fund 459-4426-10 and 459-4369-10