Roles of amino acids in the regulation of food intake by animals

Guoyao Wu, Ph.D.

Department of Animal Science Texas A&M University College Station 77843

I. Introduction

Traditional Classification of Amino Acids in Animal Nutrition

EAA: AA whose carbon skeletons cannot be made or whose synthesis is insufficient.

NEAA: AA which can be synthesized sufficiently to meet the needs of animals.

Rose WC (1957) Nutr Abstr Rev Ser. 27:631-647

Synthesis of NEAA from EAA in Animals

Functional Amino Acids in Animal Nutrition

Amino acids that participate in and regulate key metabolic pathways to improve:

---- Health ---- Survival ---- Growth ---- Development ---- Lactation ---- Reproduction

of the organisms.

Wu (2013) Amino Acids 45:407-411

II. Overall Review of regulation of Food Intake by Amino Acids

Importance of Food Intake Animals depend on food intake for: --- Health --- Survival --- Growth --- Development --- Lactation --- Reproduction

For the same reason, food intake of animals must be regulated to: --- Reject --- Adapt --- Maintain

Regulation of Food Intake by Amino Acids (AA)

Factors Affecting Effects of AA

Dietary factors
 Genetic backgrounds
 Physiological states
 Pathological states
 Environmental factors
 Management, Behavior

Wu (2013) Amino Acids: Biochemistry and Nutrition (CRC Press)

Nutritional Factors Affecting the Effects of Amino Acids on Food Intake by Animals

- --- Amino acid (AA) content and proportion in diets --- Dosage and type of supplemental AA
- ---- Energy content
- --- Composition of carbohydrate, lipids, vitamins and minerals
- --- Anti-nutritional factors and toxic substances
- --- Ingredients used in formulating basal diets --- Methods of food processing
- ---- Physical characteristics of diets

(e.g., temp, particle size, color, smell, and taste)
--- Form of the food (liquid, pellet, or powder)
--- Water quality

Genetic Factors Affecting the Effects of Amino Acids on Food Intake by Animals

--- Species (e.g., cattle, fish, horse, humans, pigs, poultry, and sheep)
--- Breeds (leghorn vs. broiler chickens; Meishan vs. offspring of Landrace x Yorkshire gilts and *Duroc x Hampshire* boars)
--- Sex (males and females; boars vs sows)

Physiological and Metabolic Factors Affecting Effects of Amino Acids on Food Intake by Animals

---- Age, Pregnancy, and Lactation ---- Light, Circadian clock, and melatonin --- Release of hormones and satiety signals from the gut & brain) --- Concentrations of AA, glucose, fatty acids and their metabolites in plasma and brain --- Motility of the gastrointestinal tract

Pathological Factors Affecting Effects of Amino Acids on Food Intake by Animals

> ---- Infection --- Trauma --- Neoplasia ---- Diabetes ---- Obesity --- Cardiovascular disease ---- Fetal growth restriction --- Nausea ---- Vomiting

Environmental Factors Affecting Effects of Amino Acids on Food Intake by Animals

--- Ambient temperature (e.g., heat stress, cold, local heating)
--- Ambient humidity
--- Air pollution (e.g., PM_{2.5}, ammonium sulfate, ammonia, H₂S, CO, and CO₂)
--- Sanitation

Management and Behavioral Factors Affecting Effects of Amino Acids on Food Intake by Animals

---- Frequency of meals --- Weaning --- Individual and group hygiene --- Control of noise --- Humane treatment of animals --- Physical activity --- Dietary habits --- Social behavior

III. Effects of Either Deficiency or Excess of AA in <u>Purified Diets</u> on Food Intake by Animals

Either Deficiency or Excess of <u>All AA</u> in <u>Purified Diets</u> Affects Food Intake by Male Rats

d 0 = 30 days of age (Sprague-Dawley rats) Values are means ± SEM, n = 10. a-b; P < 0.05. Wu G (Texas A&M University)

Either Deficiency or Excess of <u>All AA</u> in <u>Purified Diets</u> Affects Growth of Male Rats

d 0 = 30 days of age (Sprague-Dawley rats) Values are means ± SEM, n = 10. a-b; P < 0.05. Wu G (Texas A&M University) Animals Rejects A <u>Purified Diet</u> Containing <u>No EAA</u> (Either One EAA or A Group of EAA)

Birds, Pigs, and Rats:

Reject a purified diet containing no EAA.

Rats:

Rejection occurs between 15 and 30 min after starting consumption of the diet.

Rose (1957) Nutr Abstr Rev Ser. 27:631-647 Harper et al (1970) Physiol Rev 50:428-458 Gietzen et al. (2007) Annu Rev Nutr 27:63-78

Repletion of EAA-Devoid Diets

Birds, Pigs, and Rats:

When the basal EAA-free diet is repleted with the missing EAA, animals continue to eat until satiation.

Rats:

The threshold for sensing EAA in diet: ~100 ppm.

Rose (1957) Nutr Abstr Rev Ser. 27:631-647 Harper et al (1970) Physiol Rev 50:428-458 Gietzen et al. (2007) Annu Rev Nutr 27:63-78 **Choices Among EAA-Deficient and Adequate Diets**

Birds, Pigs, and Rats:

If choices are given, animals do not consume an EAA-deficient diet, forage diets containing some EAA, and select a diet containing sufficient EAA.

Harper et al (1970) Physiol Rev 50:428-458; Gietzen et al. (2007) Annu Rev Nutr 27:63-78

Animals Eat Less When Fed A <u>Purified Diet</u> Containing <u>Excessive EAA (Either One or A Group)</u>

Birds, pigs & rats eat 25-60% less if a diet contains:

2% Trytophan
3% Histidine, Methionine, Phenylalanine, Threonine or Lysine
4% Leucine, Isoleucine, or Valine

Harper et al (1970) Physiol Rev 50:428-458 Koehnle & Gietzen et al. (2005) Nutritional Neuroscience. Pp. 147-161.

Either Deficiency or Excess of <u>A Synthesizable AA</u> in <u>Purified Diets</u> Affects Feed Intake (<u>Arginine</u> for Rats)

d 0 = 30 days of age (Sprague-Dawley rats) Values are means ± SEM, n = 10. a-b; P < 0.05. Wu G (Texas A&M University)

Either Deficiency or Excess of <u>A Synthesizable AA</u> in <u>Purified Diets</u> Affects Growth (<u>Arginine</u> for Rats)

d 0 = 30 days of age (Sprague-Dawley rats) Values are means ± SEM, n = 10. a-b; P < 0.05. Wu G (Texas A&M University)

Either Deficiency or Excess of <u>A Synthesizable AA</u> in <u>Purified Diets</u> Affects Feed Intake (<u>Glycine</u> for Pigs)

Weeks	Suppl	Pooled			
	0.0	0.5	1.0	2.0	SEM
d 0-7	33.1 ^c	35.6 ^b	36.4 ^b	38.8 ª	0.79
d 7-14	32.6 ^c	34.8 ^b	36.0 ^b	38.1ª	0.66

n = 8. Pigs were fed a casein-based diet between 14 and 28 days of age. d 0 = 14 days of age. a-b: P < 0.05.

Wang et al. (2014)

IV. Effects of Either Deficiency or Excess of AA in <u>Complex Diets</u> on Food Intake by Animals IV. Effects of Either Deficiency or Excess of AA in <u>Complex Diets</u> on Food Intake by Animals Animals eat Less when fed a Severely EAA-deficient <u>complex diets (either one or a group of EAA).</u>

However, responses to mild EAA-deficient diets
depend on individual amino acids:
Feed intake: e.g., Lysine, Methionine, and Threonine
Feed intake: e.g., Tryptophan

Le Floc'h and Sève (2007) Livest Sci 112:23-32 Edmonds and Baker (1987) J Anim Sci 64:1664-71

Effects of Dietary Protein and Methionine (EAA) Levels on Feed Intake by Lactating Cows

Variable	Crude Protein		Rumen-Protected Met		SEM
	15.8%	17.1%	0 g/d	9 g/d	
DM Intake (kg/day)	24.4	25.5*	24.6	25.3*	0.37
Milk yield (kg/day)	40.0	41.7*	40.0	41.4 †	0.72

Holstein cows were fed corn silage-based experimental diets for 4 weeks. * P < 0.05; † P = 0.10.

Broderick et al. J dairy Sci 92:2719-28.

Animals Eat Less When Fed <u>Complex Diets</u> Containing <u>Excessive EAA (Either One or A Group)</u>

Birds, pigs & rats eat 10-55% less if a diet contains:

4% Trytophan
4% Histidine, Methionine, Phenylalanine, Threonine or Lysine
6% Leucine, Isoleucine, or Valine

Edmonds and Baker (1987) J Anim Sci 64: 1664-71; 65:699-705.

Weanling Pigs (8 kg) Eat Less When Fed Corn- and Soybean Meal-Based Diets (<u>Complex Diets</u>) Supplemented with An Excessive EAA

Self-selection of Corn- and Soybean Meal-Based Diets (Complex Diets) by Young Pigs Supplemented with or without An Excessive EAA

Edmonds and Baker (1987) J Anim Sci 65: 179-185.

Young Chicks Eat Less When Fed Corn- and Soybean Meal-Based Diets (<u>Complex Diets</u>) Supplemented with An Excessive EAA

Edmonds and Baker (1987) J Anim Sci 65: 699-705.

a-c; P < 0.05

Either Deficiency or Excess of <u>A Synthesizable AA</u> in <u>A Complex Diet</u> Affects Food Intake (<u>Glycine</u> for Pigs)

Means \pm SEM, n = 8. Pigs were fed a corn- and soybean meal-based diet between d 28 and 42. d 0 = 28 days of age (weaning).

Wang et al. (2014)

Effects of Dietary Supplementation with Glutamine or Glutamate on Feed Intake by Weanling Pigs

AA	Dieta	Pooled			
	0.0	0.5	1.0	2.0	SEM
Glutamine	348 ª	353 ª	342 ^a	287 ^b	19
Glutamate	352	356	361	358	22

n = 12. Values (g/d) are for the 2^{nd} week postweaning. Pigs were weaned at 21 days of age to a corn- and soybean meal-based diet containing 21%. a-b: P < 0.05.

Wu G. Texas A&M University

IV. Mechanisms Responsible for Effects of Dietary Amino Acids on Food Intake by Animals Brain Regulation of Food Intake: Molecules and Networks Broberger C (2005) J Int Med 258:301-327

The brain integrates signals from the stomach, intestine, liver and blood to regulate food intake.

ARC: Arcuate nucleus (hypothalamus) DMX: Dorsal motor nucleus of vagus nerve IML: Intermediolateral cell column nTS: Nucleus tractus solitarii (brainstem) NPY: Neuropeptide Y OEA: Oleoylethanolamide (fatty acid) POMC: Pro-opiomelanocortin PYY: Peptide YY (36-AA peptide)

ARC, Arcuate; CCK, Cholecystokinin; DMH, Dorsomedial hypothalamus; LH, Lateral hypothalamus; PVN, Paraventricular nucleus; NTS, Nucleus tractus solitarius; VMN, ventromedial nucleus

Acknowledgments

Collaborators Graduate Students Postdoctoral Fellows Research Assistants

United StatesNDepartment ofoAgricultureA

National Institute of Food and Agriculture

Texas A&M University

A taste of the future.