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Outline
* Gene mapping with SNP array
* What we have learnt?
* Gene mapping using sequence data

* Discuss if it is a game changer
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Quantitative traits

* Phenotypic variation for quantitative traits results from the

segregation of alleles at multiple loci
 QTL - Quantitative trait loci

 QTL effect depends on

— Genotype
— Environment
— Their interactions

* Major challenge is to map the molecular polymorphisms

responsible for the variation in quantitative traits
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Genome-wide association

studies (GWAS)

* An approach that scans markers across
genome to find genetic variations associated
with a particular quantitative trait or complex

disease
LY
Direct association Indirect association
Causal locus directly typed Marker correlated with causal locus

Hirschhorn & Daly, Nat Rev Genet 2005
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What have we Iearned frggm
GWAS?

1000s trait-associated genetic variants have

been identified by GWAS
Majority with small effect on the trait
Very little of apparent heritability is explained

Biological effect behind majority of the

associated variants remains unclear
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Heritability explained by the identified
loci

Proportion of
Number of P

Disease heritability

loci

explained (%)

Age-related macular degeneration 5 50.0
Crohn's disease 32 20.0
Systemic lupus erythematosus 6 15.0
Type 2 diabetes 18 6.0
HDL cholesterol 7 5.2
40 5.0
Early onset myocardial infarction 9 2.8
Fasting glucose 4 1.5

Manolio et al. Nature 461, 747-753 (2009)
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Missing heritability

e Very little of apparent heritability is explained

e Heritability estimates can be overstated

— Shared environment

— Non-additive gene effects

— Gene x environment

— Epigenetics including parent-of-origin effects

* Poor tagging

— Common variants
— Structural variants
— Rare mutations of large effect
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Different expected signatures from genome-
wide association studies for four models
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Feasibility of identifying genetic variants
by risk allele frequency and strength of

genetic effect

Effect size /) T

-
-
LT

Low-frequency
variants with
intermediate effect

Odd ratio

Rare variants of
small effect
very hard to identify
by genetic means

- X

Allele frequency
Manolio et al. Nature 461, 747-753 (2009)
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Allele frequency and effect sizes for genetic
variants associated with breast cancer

- 20.0 Rare alleles
TP53

causing High-effect
Mendelian common variants
_disease influencing

" common disease
Low-frequency
variants with

Effect Size _ :
intermediate effect

L A 3.0 Common

Intermediate variants
implicated in

ECHDC] RNF1 46 common disease
Modest | 1.5 small effect - Ipll.2
very hard to identify 19p13.11 R o i CASPS

Low 19 by genetic means I1ql3.3 H H SLCAA 725

0.001 0.005 0.01 0.05

Allele Frequency
Hindorff L A et al. Carcinogenesis 2011;32:945-954




Sequence based design for
genome-wide association
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Advantage of sequence data

 The causal mutations are in the Falling fast

In the first few vears after the end of the Human Genome Project, the cost of

d t genome sequencing roughly followed Moore's law, which predicts exponential
a a declines in computing costs, After 2007, sequencing costs dropped precipitously.

100,000
* No longer depend on linkage
disequilibrium |
* Discover mechanisms of i
disease/ complex traits jw
* |Information is usable across 0

population

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Hayden EC, Nature 2014, 507:294
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Genome / exome sequencing

 Genome: All the genetic component within in organism

(~3%x10° bp)

 Exome: the portions of a gene or genome that code

information for protein synthesis

e Approximately 180,000 exons in the human genome,

arranged into approximately 22,000 genes

 Exome represent about 2-3% of the genome
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Exome Sequencing

e Estimated that majority of disease causing

mutations will be identified within exome
* Lower cost, better depth of coverage
* Less data analysis /storage
* Fewer variants

* Biological function is known
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Sequence based design for GWA

* Greater potential to identify causal variants
— Direct application

* Rare variants
e Spontaneously arising (De novo) discovery

* Expensive

— International collaborations (1000 genomes project, UK10K)
— Imputation works (Hybrid design)

* Handling vast amount of information (IT support)

* |nterpretation problems
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Pace of discovery of novel rare-disease-
causing genes
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Whole genome sequence
and association with
quantitative traits



Imputation to full sequence

e 242 whole genome sequenced bulls

e ~9 million variants

Imputation accuracy

Imputation accuracy
07 08 09
1 1 1

0I2 0!3 0!4 D!5
-Br¢ndum et al. 2014
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GWAS with NGS data in dairy cattle

Additive genetic variance (%) explained by lead QTLs

QTL Milk Fat Protein Mastitis Fertility

] 10.22 12.21 2.63 418 1.66

2 2.29 2.39 0.96 2.09 1.66

3 1.67 1.43 0.96 1.98 1.58

4 1.49 1.36 0.96 1.76 1.50

5 1.30 1.23 0.91 1.54 1.50
Ten lead

OTLs 22.61 23.86 10.88 18.58 14.83
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LD obscuring the location of specific
causative loci

Chr—-6-8SMB Mastitis Index
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Sahana et al. 2014
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Strongest association with intronic
variants

A major QTL for fat

on chromosome 5

CHRS5-Fat

e Strongest associated
SNPs are from
MGST1 gene

—logo(p —value)

e But are intronic

variants
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Biological effect behind variants remains
unclear

e Associated loci are located outside recognized genes

e No known function of the allelic variant

e LD obscuring the location of specific causative loci

— Leads to inability to ascribe function

— Pinpointing the causal variant among the many variants
present in the genome remains a major challenge

 Association information alone is often insufficient for

guantitative traits
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Genetic heterogeneity

A mutation in APP protecting against
Alzheimer’s disease (Jonsson et al., 2012)

Controls > 85y and
normal cognition

Controls >

85y
Frequency of

APP A673T Controls

variant in %
Alzheimer’s
- .
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Mutations are outside genes

A 40 kB duplication causes hereditary mixed
polyposis syndrome (Jaeger et al., 2012)

controls

40 kb duplication
3 4 5 6 P

SCG5 exon 3-6 dup GREM1
upregulated in
HMPS
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How do we prioritize
candidate variants?
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Steps to prioritize candidate

variants

o " ™ b
&% (@9 o ,. -
| Linkage amnd B
L
1 Exommee P
R 00 <.
L y

c %“Wariants of various functional classes

Ay gy gy

I}-)

FPromoter variant Coding variant
b —— W -
UTR wvariant Intronic variant
C — e e Ere
Intergenic variants
I——- MMon-coding RMNA variamt
(] ——

d Comparative genoniics

]

—k - e
—_—
e
P L= —— —'-._.-'—'::-_’-‘H-
—_—
Tm— e
_—

]
[ I I e R I I
¥

By oy oy

p Py

Cooper & Shendure, 2011

MNature Rewviews | Genetics



- Liikaisdecc)
Evidence relevant to the implication of
seqguence variants to phenotype

Evidence level | Evidenceclass | _______Bxample

Gene level Genetic Gene burden

Experimental  Protein interaction, biochemical
function, expression, gene
disruption, model system

Variant level Genetic Association, segregation,
population frequency

Informatics Conservation, predicted function

Experimental  Gene disruption, phenotype
recapitulation, rescue

MacArthur et al. Nature 2014, 508:469-476
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Challenges ahead

e Structural variants

 Merging massive amount of data (WGS, WES,

‘omics’ data, phenotypes, environment etc.)

* Greatest challenge will be to deciphering

functional mechanism and clinical relevance
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Concluding remarks

* Sequence data

— Increased discovery of QTL
— Precise localization of QTL

— Very successful to identify causal variants for
monogenic trait

— But not so successful for quantitative trait

e Limitation to ascribe function

 Difficulty in separating causal variants from the makers
in LD
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Concluding remarks

* We need very large data sets, larger than any

entity can collect on its own

— Foster cooperation: knowledge and data
* |t is now time to utilize the information for

improved care for diseases / prediction
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