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Drosophila melanogaster Genetics Reference Panel (DGRP)

176 inbred lines

for each line ~ 100 males and 100 females phenotyped o

all lines fully sequenced with ~2.5 mio SNPs

Genomic prediction with GBLUP

accuracy of prediction evaluated by 5-fold cross-validation (CV)

all
Starvation resistance 0.24
Startle response 0.23
Chill coma recovery -.04

only males

CV accuracy

H2

only females
0.25 0.59
0.22 0.57
0.05 0.37
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Why does genomic prediction fail for the heritable trait
chill coma recovery while it works for other traits?
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Obvious candidate reasons (non-normal distribution,
outliers etc.) could be ruled out



Leave-one-out cross-validation
= 175 lines in training set
= 1 line predicted

= 176 replicates

W training set
M predicted

Obtained accuracy with all SNPs:

males: NA (in most cases 65 = 0)

females: 0.059



Prediction ability

Poor man‘s Bayes B
= 1,868,905 common variants (MAF >= 0.05)
= 175 lines in training set
= GWAS in the training set
= select all SNPs withp < 107™*
= predict remaining line just with this subset of SNPs

= repeat 176 times so that each line is predicted once
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How to include additive x additive epistasis

Additive genomic relationship matrix (VanRaden, 2008)

Matrix M: # individuals x # genotypes, coded as -1,(0),1

Matrix P: # individuals x # genotypes, columniis 2-(p, —0.5)
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Without SNP-selection

Prediction with the epistatic covariance
matrix G , , based on all SNPs

= Prediction ability: ~0



With SNP-selection

1. ldentify significant additive x additive
interactions in an epistatic GWAS



With SNP-selection

1. ldentify significant additive x additive
interactions in an epistatic GWAS

2. Build the G~ matrix for just the SNPs
included in the pairs

3. Construct the epistatic matrix
G, =G oG’

= Prediction ability with this model: ~0
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William Astle and David J. Balding’

G . 1 nSNPS(nli_pi)(lni_pi)'
AB
Rowps 1 2-p;-(1—p;)

VanRaden (2008): G = DM =P
2:2 (p,-(1=p))
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Extention of the Astle & Balding approach

for additive x additive epistasis

Epistatic GWAS = k = 1, ..., ngp significant SNP pairs {k,, k,}

_ '
Construct a matrix for each SNP G, (m’“ P.)(m,; —Py)

2-pu-(I=py)

Ngp

=26 oG

Ngp k=1

Then build G
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With SNP-selection

1. ldentify significant additive x additive
interactions in an epistatic GWAS

2. Build the G ,; matrix with all
significant pairs
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With SNP-selection

1. ldentify significant additive x additive
interactions in an epistatic GWAS

2. Build the G ,; matrix with all
significant pairs

= Prediction ability with this model ...

' '

' '
i i

13



Leave-one-out cross-validation — epistatic SNP selection

= 672,636 LD-pruned frequent variants (MAF >=0.15)

= 175 lines in training set

= do an additive x additive GWAS in the training set (2.2 X 10" pairs)

= construct the GABAxAmatrix only with those SNP pairs for whichp < 107

= predict the remaining line

= repeat this 176 times
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Prediction ability

Combined additive + epistatic scan

= chose the epistatic set with the highest predictive ability

= add an additive scan across the whole scale

= predict with a combined model (additive + epistatic)
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Female

Visualization of network
architecture with
Cytoscape

(Smoot et al., 2011)

Sexes combined




Summary and conclusions
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Chill coma resistance in Drosophila melanogaster is a trait for
which genomic prediction with GBLUP fails, although genetic
variance exists

GWAS-based pre-selection of the most significant SNPs
improves massively the prediction ability in an additive model

When properly modeled, epistatic additive x additive
interactions also provide a comparable prediction ability

Combining the top additive and additive x additive effects in the
same model yields a prediction ability ~0.4, compared to zero
with GBLUP

The trait chill coma resistance was found to have a rather
different genetic architecture in males and females

Predicting performance of one sex with a model optimized for
the other sex essentially failed
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What could this result mean for animal breeding?

» Traits expressed in males and females (such as growth-related traits)
may have very different genetic architecture (despite having a high
genetic correlation, r),- for chill coma resistance was 0.87)

= Genomic prediction relies on SNPs that capture the underlying
genetic architecture of a trait (especially so for methods with feature
selection such as Bayes B)

= A model trained with male performance data may thus fail to
accurately predict female performances (and vice versa)

= Empirical validation of this hypothesis needed
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Thank you
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Predicted vs. observed phenotypes with the optimal

model in the leave-one-out crossvalidation

females

males

Observed phenotype

Observed phenotype

35 1

35 4

30 4

254

201

151

10 1

Additive only (r =0.43)

Predicted phenotype (centered)

Additive only (r = 0.40)

Predicted phenotype (centered)

Observed phenotype

Observed phenotype

Epistatic pair only (r =0.32)

35 1

Predicted phenotype (centered)

Epistatic pair only (r = 0.35)

35 4

Predicted phenotype (centered)

Observed phenotype

Observed phenotype

Additive + epistatic (r = 0.43)

35 1

Predicted phenotype (centered)

Additive + epistatic (r = 0.48)

35 1

Predicted phenotype (centered)
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The proof of the pudding ...

External validation by predicting an additional set of 27 lines

sequenced and phenotyped (~50 replicates per line and sex) in 7/2013
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ANOVA with individual measurements
(176 lines X 200 individuals = 35°000 measurements)

phenotype = i + sex + line + line * sex 4 replicate(sex * line) + residual (Model 1)
line~N (0, o/ 1)
phenotype = p + sex + line + line * sex + replicate(sex * line) 4+ g + residual (Model 2)
g~N(0,0;G)

phenotype = pt + sex + line + line * sex + replicate(sex x line) + g + (¢ X g) + residual (Model 3)

g %X g~N(0,0454G ° G)
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Variance components obtained with ASREML

Starvation resistance

Model 1
Model 2
Model 3

Startle response

Model 1
Model 2
Model 3

Chill coma recovery

Model 1
Model 2
Model 3
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Genomic prediction in (largely) unrelated samples gains from constructing the
G matrix only from the most significant SNPs in a GWAS
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Thousands of SNPs in the model
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Are the DGRP lines largely unrelated?

Heatmap of G

Color Key
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