

Genomic Differentiation of 5 Danish and French Dairy Breeds

Bernt Guldbrandtsen ¹ Didier Boichard ²

 $^1\mbox{Center}$ for Quantitative Genetics and Genomics, Aarhus University, Denmark

²INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy en Josas, France

Breeds	One Region	Functional Variants	Conclusions
•0000000	000	0000	0
	E	Breeds	

- Farm animals differentiated into genetically distinct breeds
- Genetic bases of breed differences largely unknown

Breeds	One Region	Functional Variants	Conclusions
•0000000	000	0000	0
	B	Breeds	

- Farm animals differentiated into genetically distinct breeds
- Genetic bases of breed differences largely unknown

Functional Variants

• Cattle breeds formed centuries ago

One Region

• Founder effect

Breeds 00000000

- Subsequent differential selection
- Recently (very) finite population sizes

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

• Cattle breeds formed centuries ago

One Region

• Founder effect

Breeds 00000000

- Subsequent differential selection
- Recently (very) finite population sizes

Functional Variants

• Cattle breeds formed centuries ago

One Region

• Founder effect

Breeds 00000000

- Subsequent differential selection
- Recently (very) finite population sizes

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

• Cattle breeds formed centuries ago

One Region

• Founder effect

Breeds 00000000

- Subsequent differential selection
- Recently (very) finite population sizes

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Selection

Functional Variants

• Local differences in allele frequencies

One Region

• Haplotype structure

Breeds 00000000

• Several studies detected numerous selection signals among beef and dairy breeds – mixture of time-scales

Selection

Functional Variants

• Local differences in allele frequencies

One Region

• Haplotype structure

Breeds 00000000

• Several studies detected numerous selection signals among beef and dairy breeds – mixture of time-scales

Breeds	One Region	Functional Variants	Conclusions	
00000000	000	0000	O	
Selection				

- Local differences in allele frequencies
- Haplotype structure
- Several studies detected numerous selection signals among beef and dairy breeds mixture of time-scales

Images from Wikimedia

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Breeds 000000000

Conclusions 0

Whole Genome Sequencing

Functional Variants

Breed	Number
Holstein	123
Jersey	27
Montbéliard	28
Normande	24
Red Danish	45

Sequenced at 10X or more Characterizing differences between breeds

One Region

Breeds 000000000

Functional Variants

Whole Genome Sequencing

Breed	Number
Holstein	123
Jersey	27
Montbéliard	28
Normande	24
Red Danish	45

Sequenced at 10X or more

Characterizing differences between breeds

One Region

Breeds 000000000

Functional Variants

Whole Genome Sequencing

Breed	Number
Holstein	123
Jersey	27
Montbéliard	28
Normande	24
Red Danish	45

Sequenced at 10X or more Characterizing differences between breeds

One Region

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

• Millions of variants

Breeds 0000000000

- Wright's F_{st} measures differentiation between populations
- $F_{st} = 0 \rightarrow \text{No differentiation}$

One Region

- $F_{st} = 1 \rightarrow$ Fixed differences
- Weir's weighted F_{st} in bins of 10 kb
- Weir's weighted F_{st} for functional variants

Functional Variants

• Millions of variants

Breeds 0000000000

- Wright's F_{st} measures differentiation between populations
- $F_{st} = 0 \rightarrow \text{No differentiation}$

One Region

- $F_{st} = 1 \rightarrow$ Fixed differences
- Weir's weighted F_{st} in bins of 10 kb
- Weir's weighted F_{st} for functional variants

Functional Variants

• Millions of variants

Breeds 0000000000

- Wright's F_{st} measures differentiation between populations
- $F_{st} = 0 \rightarrow No$ differentiation

One Region

- $F_{st} = 1 \rightarrow$ Fixed differences
- Weir's weighted F_{st} in bins of 10 kb
- Weir's weighted F_{st} for functional variants

Functional Variants

• Millions of variants

Breeds 0000000000

- Wright's F_{st} measures differentiation between populations
- $F_{st} = 0 \rightarrow \text{No differentiation}$

One Region

- $F_{st} = 1 \rightarrow$ Fixed differences
- Weir's weighted F_{st} in bins of 10 kb
- Weir's weighted F_{st} for functional variants

Functional Variants

• Millions of variants

Breeds 0000000000

- Wright's F_{st} measures differentiation between populations
- $F_{st} = 0 \rightarrow \text{No differentiation}$
- $F_{st} = 1 \rightarrow$ Fixed differences
- Weir's weighted F_{st} in bins of 10 kb

One Region

• Weir's weighted F_{st} for functional variants

Functional Variants

• Millions of variants

Breeds 0000000000

- Wright's F_{st} measures differentiation between populations
- $F_{st} = 0 \rightarrow \text{No differentiation}$

One Region

- $F_{st} = 1 \rightarrow$ Fixed differences
- Weir's weighted F_{st} in bins of 10 kb
- Weir's weighted F_{st} for functional variants

Functional Variants

• 8 highly differentiated regions across genome

- BTA7(2), BTA13 BTA17(2), BTA22, BTX(2)
- Most are simple regions (250-600 kb)

One Region

Breeds 00000000

• On BTX one very large (2.6 Mb), very complex – assembly problem?

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

• 8 highly differentiated regions across genome

• BTA7(2), BTA13 BTA17(2), BTA22, BTX(2)

• Most are simple regions (250-600 kb)

One Region

Breeds 00000000

• On BTX one very large (2.6 Mb), very complex – assembly problem?

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

- 8 highly differentiated regions across genome
- BTA7(2), BTA13 BTA17(2), BTA22, BTX(2)
- Most are simple regions (250-600 kb)

One Region

Breeds 00000000

• On BTX one very large (2.6 Mb), very complex – assembly problem?

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

- 8 highly differentiated regions across genome
- BTA7(2), BTA13 BTA17(2), BTA22, BTX(2)
- Most are simple regions (250-600 kb)

One Region

Breeds 00000000

• On BTX one very large (2.6 Mb), very complex – assembly problem?

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

1

Breeds	One Region	Functional Variants	Conclusions		
00000000	00●	0000	O		
Across Regions					

- Only one region clearly associated with a gene
- Consistent pattern: Hol+Nor+RDC vs. Jer+Mon

Breeds	One Region	Functional Variants	Conclusions
00000000	00●	0000	O
	Across	s Regions	

- Only one region clearly associated with a gene
- Consistent pattern: Hol+Nor+RDC vs. Jer+Mon

Functional Variants •000

• DNA sequence changes in exons differ in effect

One Region

Breeds 000000000

- Effects can be predicted using tools from ENSEMBL (VEP)
- Synonymous, missense (SIFT: tolerated, "deleterious"), drastic (stop gained, stop lost, frame shift)
- Synonymous changes least likely to be subject to selection
- More drastic changes more likely to be subject to selection

Functional Variants •000

• DNA sequence changes in exons differ in effect

One Region

Breeds 000000000

- Effects can be predicted using tools from ENSEMBL (VEP)
- Synonymous, missense (SIFT: tolerated, "deleterious"), drastic (stop gained, stop lost, frame shift)
- Synonymous changes least likely to be subject to selection
- More drastic changes more likely to be subject to selection

Functional Variants

• DNA sequence changes in exons differ in effect

One Region

Breeds 000000000

- Effects can be predicted using tools from ENSEMBL (VEP)
- Synonymous, missense (SIFT: tolerated, "deleterious"), drastic (stop gained, stop lost, frame shift)
- Synonymous changes least likely to be subject to selection
- More drastic changes more likely to be subject to selection

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

• DNA sequence changes in exons differ in effect

One Region

Breeds 000000000

- Effects can be predicted using tools from ENSEMBL (VEP)
- Synonymous, missense (SIFT: tolerated, "deleterious"), drastic (stop gained, stop lost, frame shift)
- Synonymous changes least likely to be subject to selection
- More drastic changes more likely to be subject to selection

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

• DNA sequence changes in exons differ in effect

One Region

Breeds 000000000

- Effects can be predicted using tools from ENSEMBL (VEP)
- Synonymous, missense (SIFT: tolerated, "deleterious"), drastic (stop gained, stop lost, frame shift)
- Synonymous changes least likely to be subject to selection
- More drastic changes more likely to be subject to selection

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

One Region

Breeds 000000000

	Functional Annotation Class					
	Tolerated Deleterious		Drastic	c (stop etc.)		
Sign. (%)	Count	%	Count	%	Count	%
All	56,056		18,516		1,140	
0.1	74	0.13	34	0.18	6	0.50

Synonymous mutations F_{st} distribution corrected for allele frequency differences used as (conservative) null distribution

Functional Variants

One Region

Breeds 000000000

	Functional Annotation Class					
	Tolera	nted	Delete	rious	Drastic	c (stop etc.)
Sign. (%)	Count	%	Count	%	Count	%
All	56,056		18,516		1,140	
0.1	74	0.13	34	0.18	6	0.50

Synonymous mutations F_{st} distribution corrected for allele frequency differences used as (conservative) null distribution

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Functional Variants

• Slight excess of differentiation in more extreme mutations

- Conservative test: some synonymous mutations are selected + effect of hitchhiking
- A few genes of recognizable effect, many uncharacterized proteins
- Exception: Black vs. red coat color

One Region

Breeds 000000000

Functional Variants

- Slight excess of differentiation in more extreme mutations
- Conservative test: some synonymous mutations are selected + effect of hitchhiking
- A few genes of recognizable effect, many uncharacterized proteins
- Exception: Black vs. red coat color

One Region

Breeds 000000000

Functional Variants

- Slight excess of differentiation in more extreme mutations
- Conservative test: some synonymous mutations are selected + effect of hitchhiking
- A few genes of recognizable effect, many uncharacterized proteins
- Exception: Black vs. red coat color

One Region

Breeds 000000000

Functional Variants

- Slight excess of differentiation in more extreme mutations
- Conservative test: some synonymous mutations are selected + effect of hitchhiking
- A few genes of recognizable effect, many uncharacterized proteins
- Exception: Black vs. red coat color

One Region

Breeds 000000000

Breeds	One Region	Functional Variants	Conclusions
00000000	000		•
	Con	clusions	

- 1. Distinct patterns of differentiation between 5 dairy breeds. Clear grouping of breeds
- 2. Many functionally annotated variants are highly differentiated

Breeds	One Region	Functional Variants	Conclusions
00000000	000	0000	•
	Con	clusions	

- 1. Distinct patterns of differentiation between 5 dairy breeds. Clear grouping of breeds
- 2. Many functionally annotated variants are highly differentiated