

Influence of fermentation and enzyme addition on digestibility of a rapeseed cake rich diet in pigs.

Department of Animal Science, Aarhus University, Foulum, Denmark

PhD Fellow Grethe Venås Jakobsen

Grethe.Venaas@agrsci.dk

Motivation

Fluctuating prices on cereals

Need for alternative ingredients for feed

Locally grown crops (Denmark)

- High moisture maize
- Rapeseed cake
- Peas

Increased production of biodiesel More rapeseed cake available

Peas and rapeseed cake are valuable protein sources NSP, lignin and LMW sugars constitute a nutritional problem

Background - Fermented liquid feed

Advantages:

 Beneficial impact on gastrointestinal health (Reducing numbers of pathogens in GIT) Increased nutrient digestibility (phosphorus, CP, AA, calcium)
 Decrease in NSP concentration

Background – enzyme addition

Well known strategy to increase nutrient digestibility Commonly used in <u>dry feed</u>

Aqueous matrix of FLF suitable for enzyme addition

In vitro screening of 9 enzyme mixtures (phytases and carbohydrases) on fermented rapeseed cake.

GluXylPec (NovoZymes A/S): Decrease in total- and insoluble-NSP, increase in soluble CP

Aim

To increase the digestibility in pigs
of a diet based on locally grown crops,
through liquid fermentation and enzyme addition

Experimental design - diets

Experimental diets:

n-FLF FLF FLF+enz non-fermented liquid feed fermented liquid feed

FLF+enz FLF + β-glucanase, xylanase, pectinase mixture

Control: Wheat, barley and soybean meal (non-fermented liquid feed)

Feed:water = 1 : 2.75 Temperature = 20 °C Fermented until steady state

Ingredient, g/kg, as-fed	Exp. diet
Maize, high moisture	394.5
Rapeseed cake	200.0
Peas	200.0
Barley	166.3
Soybean meal	21.9
Calcium carbonate	10.4
Sodium chloride	3.3
Monocalcium phosphate	1.6
Vitamin- mineral premix	1.7
Phytase, 500 FTU/kg	0.1
Cr ₂ O ₃ , inert marker	0.2

Experimental design – animals and feeding

Eight barrows
Simple T-shaped cannula at distal ileum
Recovery period: 8 days

Fed four diets according to a double Latin square design Adaption period: 10 days

Sampling of ileum and faeces

Results - Composition of the <u>diets</u>

Item	Control	Experimental diets			
		n-FLF	FLF	FLF+enz	
Microbial counts, log cfu/g					
Lactic acid bacteria	4.1 ^a	7.0°	9.5°	9.6 ^c	
Enterobacteriaceae	4.4 ^a	3.8°	3.1 ^{hc}	<3.0 ^c	
Yeasts	3.2 ^a	4.6 ^b	4.10	7.1°	
рН	5.9 ^a	5.4b	1 1 ^c	3 9d	
Organic acids, mmol/kg					
Lactic acid	0.5 ^a	20.6a	214.1b	272.3°	
Acetic acid	2.9 ^a	6.8ª	25.5b	56.4c	
Ethanol, mmol/kg	0.0 ^a	1 3a	10.9b	49.9°	

Effect of enz addition: Microbial activity increased

Results - Composition of the <u>diets</u>

Item, g/kg DM	Control	Experimental diets			_	
		n-FLF	FLF	FLF+enz	_	
Non-Starch Polysaccharides						
Total	159.5 ^a	154.6ª	159.1ª	127.6 ^b		
Insoluble	119.0 ^a	116.6	119.3ª	102.8 ^b	~	Effect of enz addition
Soluble	40.5 ^a	38.0ª	39.8ª	24.9 ^b	_	More substrate for
P	4.1 ^a	4.8 ^b	4.7 ⁵	4.9 ^b		microflora
Phytate-P	-	2.12	0.9b	1.0 ^b	_	
					_	

Results - Apparent <u>lleal</u> Digestibility

	n-FLF	FLF	FLF+enz
Total-NSP	154.6ª	159.1ª	127.6 ^b

Item, %	Control	Experimental diets				P-values		
		n-FLF	FLF	FLF+enz	Diet	Period	DxP	
Crude protein	67.6 ^a	62.8 ^{ab}	62.2 ^{ab}	59.4 ^b	0.007	0.31	0.39	
Р	22.5 ^{ab}	19.5ª	36.1 ^b	32.6 ^{ab}	0.02	0.20	0.36	
DM	59.8	58.4	59.3	58.9	0.90	0.26	0.63	
Total-NSP	6.7 ^a	9.2ª	13.6a	31.1 ^b	<0.00	0.42	0.88	
Insoluble-NSP	1.2ª (4.4 ^a	9.0ª	26.2 ^b	<0.00	1 0.65	0.89	
Soluble-NSP	22.9ª	24.0 ^{ab}	27.5ab	45.8 ^b	0.03	0.45	0.79	

Effect of enz addition

Results – Apparent Total Tract Digestibility

Item, %	Control	Experimental diets				P-values		
		n-FLF	FLF	FLF+enz	Diet	Period	DxP	
Crude protein	74.3 ^a	69.0 ^b	73.2 ^a	74.0 ^a	0.004	0.49	0.93	
Р	34.5	31.8	46.1	46.9	0.02	0.74	0.98	
DM	76.6 ^a	/4.5 ^b	76.2 ^{ab}	77.2°	0.004	0.44	0.05	
Total-NSP	47.9	50.4	54.3	56.7	<0.001	0.01	0.02	
Insoluble-NSP	32.1 ^a	38.1 ^{ab} (42.3 ^b	45.0 ^b	0.001	0.08	0.05	
Soluble-NSP	93.1	92.8	90.2	91.7	0.79	0.86	0.50	

Conclusions

- Fermentation of the experimental diet resulted in a microbiologically healthy feed
- Fermentation decreased phytate-P in the diet and increased digestibility of P and NSP
- Enzyme addition decreased NSP in the diet and increased digestibility of NSP further

Next step: growth performance study

Take home message:

Fermentation and enzyme addition are valid strategies to improve the nutritional value of 'suboptimal' pig feed

Acknowledgements

Aarhus University, Department of Animal Science, Foulum, Denmark

- Senior Scientist, Bent Borg Jensen
- Professor, Knud Erik Bach Knudsen
- Senior Scientist, Nuria Canibe
- Laboratory technicians

Enzyme supplier: NovoZymes A/S, Bagsværd, Denmark