Carbohydrases influence nutrient degradability along digestive tract and fermentation patterns

Clémence Blanc and Pierre Cozannet

Objective

Simulate the digestive process of pig Isolate individual effect of pure raw material (cereal/byproduct and protein meal) Identified enzyme effect location

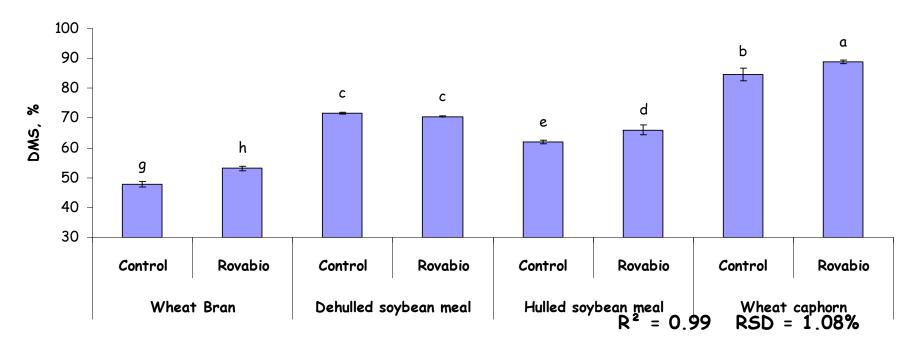
Identified enzyme effect location

Materials and methods

In-vitro digestibility adapted from Boisen and Fernandez (1997) : pepsic (0.75h); pancreatic (2.00h) phase Fermentation were simulated in Automatic pressure evaluation system (APES) fro a period of 72h

Statistics and calculation

Factorial design, variance analysis performed on dry matter degradability and volatile fatty production with raw material (n=4), enzyme (n=2) and interaction as fixed effects


Total gas production is modelized according de Groots model

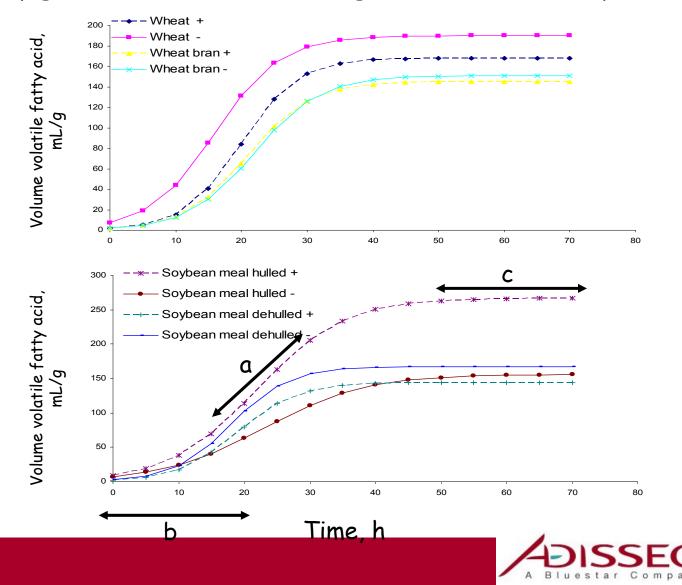
(Y = c / (1 + exp(-a(time-b))))

- Where a= growth; b= lag time; c= asymptote

Raw material/enzyme affect ileal degradability

Raw material fiber content affect dry matter digestibility

> Wheat bran \Leftrightarrow Wheat Hulled soybean meal \Leftrightarrow Dehulled soybean meal


Enzyme was most efficient on raw material with highest fiber content

NSP-enzymes modify fermentation rate

In vitro incubation : <u>pig fecal</u> + raw materials digested +/- NSP-enzymes

NSP-enzymes modify the fermentation

Raw material enzyme						Soybean meal				Statistics		
	Wheat		Wheat bran		hulled		dehulled		P values			
	+	_	+	-	+	_	+	_	material	enz	inter	
Kinetic												
۵	0.23	0.20	0.21	0.20	0.15	0.13	0.22	0.23	< 0,0001	0.073	0.340	
b	20	16	21	22	22	23	19	18	< 0,0001	0.070	0.013	
С	168	190	145	151	267	156	144	167	< 0,0001	0.073	< 0,0001	
Volatile fatty o	acid, %											
Total	0.31	0.33	0.27	0.29	0.53	0.35	0.30	0.38	< 0,0001	0.311	< 0,0001	
Acetic acid	0.16	0.17	0.14	0.15	0.31	0.21	0.15	0.20	< 0,0001	0.329	< 0,0001	
Butyric acid	0.05	0.05	0.04	0.05	0.06	0.03	0.04	0.05	0.139	0.042	< 0,0001	
isoButyric	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.001	0.521	0.135	
isoValeric	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	< 0,0001	0.206	0.009	
Propionic acid	0.08	0.10	0.07	0.08	0.14	0.10	0.08	0.10	< 0,0001	0.709	0.006	
Valeric acid	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.005	0.004	0.000	
Ammonia	10.2	10.2	11.3	12.0	10.2	9.3	13.7	11.5	<0,0001	0.114	0.024	

a= growth

b= lag time

c= asymptote

Conclusions

Raw material composition and additive affect digestive process

Among of feed reaching the hindgut ranged from 15 to 53% Enzyme increase the digestibility with more marked effect with rich fiber raw material wheat bran and hulled soybean meal (+6% units)

Remaining raw material

V max increase with Rovabio for wheat and soybean meal hulled Increase of total gas production for soybean meal hulled with Rovabio Slight reduction of total gas production for wheat with Rovabio

Volatile Fatty acid

Raw material affect AGV profile with highest amount acetic and propionic acid for hulled soybean Enzyme addition increase modulate overall profil of AVG (R² = 0.99) More important change were observed in this study for hulled soybean meal with increase of profile by 28% with enzyme

