NDSU NORTH DAKOTA STATE UNIVERSITY

Embryonic and Foetal Programming

Session 21. ASAS Session

Programming

- The process through which a <u>stimulus</u> or <u>insult</u> establishes a <u>permanent</u> response
- Developmental programming hypothesis
- Exposure during a *critical period* in development may influence later metabolic or physiological functions in adult life

10 PRINCIPLES OF DEVELOPMENTAL PROGRAMMING

6) **Compensation carries a price.** In an unfavorable environment, the developing baby makes attempts to compensate for deficiencies. However, the compensatory effort often carries a price.

Livestock consequences?

- Placental adaptations to maternal nutrition

 Kimberly Vonnahme
- The Copenhagen Sheep Model

– Mette Nielsen

Consequences in beef cattle production

– Paul Greenwood

Consequences in sheep production

- Sue McCoard

Assessing placental function in our livestock species to ensure adequate fetal development

Kimberly Vonnahme, PhD Associate Professor Department of Animal Sciences

Acknowledgements

- Collaborators at NDSU
 - Kendall Swanson
 - Joel Caton
 - Christopher Schauer
 - Steve O'Rourke
 - Larry Reynolds
 - Dale Redmer
 - Anna Grazul-Bilska
 - Justin Luther
 - Carrie Hammer
 - Greg Lardy
 - Kasey Carlin
 - Eric Berg
- Other collaborators
 - Rick Funston—UNL
 - Bret Taylor—USDA-ARS SES
 - Caleb Lemley- MSU

- Students and Staff
 - Bethany Mordhorst
 - Arshi Reyaz
 - Leslie Lekatz
 - Leticia Camacho
 - Victoria Kennedy
 - Allison Meyer
 - Tammi Neville
 - Jim Kirsch
 Jake Reed
- NIST CONTRACTOR

NDSU Animal Nutrition and Physiology Center

OUTLINE

- Background
 - Maternal blood volume
 - Need for placental adaption to change
- Focus on blood flow in current models
 - Nutrition in sheep and beef cattle
 - Nutrient restriction
 - Melatonin
 - Timing of realimentation
 - Protein

Blood distribution during pregnancy

- Uteroplacental blood flow increases dramatically to support the nutritional demands of the rapidly growing fetus
- Increased maternal plasma volume
 - 30 to 40% increase
- Increased maternal cardiac output
 - 35% increase in stroke volume
 - 15% increase in heart rate
- Fractional distribution of cardiac output to the uterus

- % of Cardiac Output
 - 0.5% non-pregnant
 - >16% late pregnant
- Note: the % of cardiac output delivered to the other tissues falls, however, absolute values of blood flow are unchanged, further pointing to the need for an expanded blood volume

Rosenfeld, 1984

Nourishing the uteroplacenta

- Uterine/ umbilical blood flows are increased during pregnancy
 - VascularremodelingVasodilatation

10 PRINCIPLES OF DEVELOPMENTAL PROGRAMMING

5) The placenta plays a key role in programming.

SHEEP AND COW PLACENTAS

Goal of my lab

• How is nutrition altering placental function?

Goal of my lab

• How is nutrition altering placental function?

Global Nutrition

Maternal intake and BW changes

Umbilical Hemodynamics in Pregnant Ewes

Lekatz et al., 2009

Can Melatonin Help?

Umbilical Blood Flow

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY NDSU Lemley et al., 2012

Umbilical Blood Flow

Lemley et al. (2012) AJP.

Melatonin enhances vasodilation

What about early blood flow?

United StatesNational InstituteDepartment ofof Food andAgricultureAgriculture

Percentage NRC recommendations

Things that make you go Hmmmm....

Day 85	Control	Restricted	SEM	P-value
Fetal wt, g	116.9	138.9	8.0	0.07
CRL, cm	17.0	17.0	0.01	0.28
Girth, cm	10.3	10.8	0.16	0.04
Placental wt, g	84.8	118.7	5.9	0.002

Fetal wt, kg	CC/CCC	RC/RRC	RR/RRC	SEM	P-value
140	2.03	2.14	2.16	0.12	0.54
254	30.33	29.80	31.00	2.40	0.84

Camacho et al., unpublished

Study by Camacho et al.

Camacho et al., 2014

CAR (BK) - D 85

Relaxation responses to BK were recorded after pre-contracting CAR arteries with 1µM NE and COT arteries with 1µM U46619.

COT (BK) - D 85

Relaxation responses to BK were recorded after pre-contracting CAR arteries with 1µM NE and COT arteries with 1µM U46619.

CAR (BK) – D 140

Relaxation responses to BK were recorded after pre-contracting CAR arteries with 1µM NE and COT arteries with 1µM U46619.

COT (BK) - D 140

Reyaz et al., unpublished

*RC is statistically different from CC (P = 0.008)

*RC is statistically different from RR

- \bullet BK CC-NI (*n* = 4)
- BK RC-NI (n = 5)
- \rightarrow BK RR-NI (*n* = 6)

Dose: *P* < 0.0001 Trt*Dose: P = 0.06

Relaxation responses to BK were recorded after pre-contracting CAR arteries with 1µM NE and COT arteries with 1µM U46619.

Camacho et al., unpublished

Uterine blood flow

Summary of Nutrient Restriction

- Cattle and sheep differ in their response to nutrient restriction
 - Caution: timing of NR & age of dam differed
- Placental vascular function differences
 - In the ewe, primarily COT
 - In the cow, both
- What is the response of the ewe upon realimentation?

Sheep MP project

- Assigned to 1 of 3 treatments (n = 6/trt)
- Individually fed LOW, CON, HIGH from d 100 to 130

Results: BK

Results: CAR DRCs

- Inhibiting PGI2 still results ulletin vasorelaxation
 - Mechanism does not involve PGI2
- Inhibiting EDHF and NO ulletdelays vasorelaxation
 - Mechanism involves EDHF and NO

Results: COT DRCs

- Fetal placental arteries relaxed in the presence of inhibitors
 - Nonclassical mechanism?

MP during Last Third of Gestation in Ewes

2012-2013 uterine blood flow

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY NDSU

Mordhorst et al., unpublished data

Protein in 2013-2014

Total Uterine Blood Flow

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY NDSU

Kennedy et al., unpublished data

Mechanisms for changes?

- In both species, protein did not impact placental weight
- BUT, perhaps change in function may be the key
- Steroid catabolism

Developmental Programming

 Placenta plays a key role in developmental programming

-"Plastic"

- -Ability to compensate
- -Target for therapeutics

Future Directions

- Time period of supplementation
- Specific nutrients that are important
- Maternal efficiencies and maternal age
- Factors that impact
 - Uterine and placental blood flow
 - Mammary gland development

Developmental Programming

- IMPORTANT TO ANIMAL HEALTH AND PRODUCTIVITY:
 - -Growth and nutrient transfer
 - -Reproductive capacity
 - -Aging and lifetime productivity

Goal: Healthy Offspring!!!

Goal: Healthy Offspring!!!

Acknowledgements

United StatesNational InstDepartment ofof Food andAgricultureAgriculture

NDSU Animal Nutrition and Physiology Center

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY NDSU