

Consequences of Nutrition & Growth During Gestation for Beef Production

Paul Greenwood & Dorothy Robinson NSW Department of Primary Industries University of New England, Armidale NSW AUSTRALIA

DJP Barker

BM

This presentation

- Background on the Australian Beef Industry
- Consequences of nutrition of pregnant cows
- Longer-term consequences for offspring
 - Growth and efficiency
 - Carcass and yield
 - Muscle cellular development
 - Beef quality
- Conclusions and context

Background

- Australian beef industry:
 - ~24,000 farms
 - 2.1 million tonnes of beef p.a.
 - Gross value of \$8 billion p.a.
- National breeding herd is pasture-based
- Early-life and backgrounding on pasture
- Two-thirds finished & slaughtered off pasture & one-third feedlotted
- Prolonged droughts & nutritional restriction common

Background

- Paucity of information on longer-term consequences of maternal nutrition and early-life growth for commercial outcomes in beef production systems
- Australian beef industry advice:

Growth restriction prior to weaning reduces subsequent growth and increases fatness in later life

Characteristics of the severely growth-retarded newborn lamb

- More fetal-like metabolic and endocrine status at birth
- Lower maintenance energy requirements
- Limited capacity for lean tissue growth
- High early-postnatal relative feed intake
 Propensity to fatten in early-postnatal period
 Greenwood *et al.* (1998-2004), Rhoads *et al.* (2000a,b), Ehrhardt *et al.* (2003)

Objectives

Answer research questions:

- Does severe, chronic maternal nutritional restriction of beef cows have long-term effects on offspring?
- Do prenatal and pre-weaning nutrition and growth interact to influence beef production?
- Do sire-genotype and early-life nutrition and growth interact to influence beef production?

Objectives

Conduct research within commercial systems

on commercial outcomes

• Help refine advisory information for the

Australian beef industry

Consequences of Nutrition of Pregnant Cows

Maternal Nutritional Restriction

	Pregnant cow nutrition		
	High	Low	
	<u>(n=285)</u>	<u>(n=229)</u>	
Cow LW post-partum (kg)	500	394	
Cow pregnancy LW Δ (kg)	+102	-11	
Cow treatment LW Δ (kg)	+55	-45	

Cafe *et al*. (2006)

Low Nutrition = Fat Score 1 – "At Risk"

Low = ~ CS 3 & 400 kg *vs.* High = ~ CS 6 & 500 kg

Factors affecting birth weight

- Maternal nutrition
- Cow genotype, age, weight and parity
- Fetal genotype and sex
- Placenta
- Thermal environment
- Litter size

Statistical analyses

• Stepwise regression

exclusion at *F* - ratio < 5.49, *P* > 0.02 for 1 d.f.

- Covariates: Dam age, Dam previous lactation status;
 Days pregnant at start of nutritional treatment; Dam BW at parturition
- Fixed Effects: Pregnancy nutrition; Lactation nutrition;
 Calf sex; Sire breed; Year
- First order interactions: Between fixed effects;
 Between covariates and fixed effects

Dam and calf weights at birth (n = 228)

Variable	Mean	Model R ²	Pregnancy nutrition r ²
Dam LW at parturition (kg)	445	71%	50%

Dam and calf weights at birth (n = 228)

Variable	Mean	Model R ²	Pregnancy nutrition r ²
Dam LW at parturition (kg)	445	71%	50%
Birth wt (kg)	33.7	43%	20%
			Robinson <i>et al</i> . (2013)

Birth weight (n = 228)

Mean	Model R ²	Terms (r ²)
33.7	48%	Dam LW parturition (26%)

Birth weight (n = 228)

Mean	Model R ²	Terms (r ²)
33.7	48%	Dam LW parturition (26%)
33.7	43%	Pregnancy nutrition (20%)

Calf	weaning	weights	(kg)
	(n =	514)	

	Maternal Nutrition				
	Low	High			
Stage of treatment	<u>(n=229)</u>	<u>(n=285)</u>	diff.		
Lactation	164	207	43		
Pregnancy	177	195	18		

Weaning	weight
(n = 2)	228)

Mean	Birth wt	Model	Terms
(kg)	(Δ/kg)	R ²	(r ²)

			Lactation nutrition (41%)
189	1.53	74%	Dam LW at parturition (14%)
			Birth Wt (3%)

Maternal Nutrition

- Cows buffer the growing fetus
- 3.7 kg difference in birth weight despite
 >100kg difference in post-partum cow live weight
- Birth weight from heifers & cows was similarly affected by nutrition during pregnancy

Maternal Nutrition

- Nutrition during pregnancy, especially during later pregnancy, also affects milk production
- Growth to weaning is sensitive to effects of nutrition of cows & milk production

Carry-over effects of maternal nutrition during pregnancy on lactation confound attempts to define the extent of fetal programming

Cafe et al. (2006), Robinson et al. (2013)

Design considerations Fetal programming studies

Uncoupling of prenatal & postnatal effects

- Artificial rearing

Cross-fostering

- Factorial experimental designs

Longer-term Consequences

Cafe *et al*. (2006), Greenwood *et al*. (2006)

Statistical analyses

- Stepwise regression
 exclusion at *F* ratio < 5.49, *P* > 0.02 for 1 d.f.
 - Covariates: Dam age, Dam previous lactation status;
 Days pregnant at start of nutritional treatment; Dam
 BW at parturition; Birth day; Birth weight; Age at
 weaning; Weaning weight; Feedlot entry weight;
 Carcass weight
 - Fixed Effects: Pregnancy nutrition; Lactation nutrition; Calf sex; Sire breed; Year
 - First order interactions: Between fixed effects;
 Between covariates and fixed effects

Liveweights (n = 228)

Stage	Mean (kg)	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Weaning	189	1.5	n.a.	74%	Birth wt (3%)
					Dam wt partur. (14%)

Liveweights (n = 228)

Stage	Mean (kg)	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Weaning	189	1.5	n.a.	74%	Birth wt (3%) Dam wt partur. (14%)
End background	514	3.0	0.7	71%	Birth Wt (13%) Weaning Wt (48%)

Liveweights (n = 228)

Stage	Mean (kg)	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Weaning	189	1.5	n.a.	74%	Birth wt (3%)
					Dam wt partur. (14%)
End background	514	3.0	0.7	71%	Birth Wt (13%) Weaning Wt (48%)
Feedlot exit	678	4.4	0.8	72%	Birth Wt (34%) Weaning Wt (11%)

Feedlot intake (kg DM/d, n = 146)

Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
12.1	0.1	0.01	75%	Year/Sex (56%)
				Birth Wt (15%)
				Weaning Wt (2%)
				Weaning age x Dam age (2%)

Feedlot intake (kg DM/d, n = 146)

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
	12.1	0.1	0.01	75%	Year/Sex (56%)
					Birth Wt (15%)
					Weaning Wt (2%)
					Weaning age x
					Dam age (2%)
Adj. for	12.1	n.s.	n.s.	84%	Wfe (63%)
feedlot entry					Year/Sex (19%)
weight (Wfe)					Age weaned (1%)
					Wfe x Year/Sex
					(1%)

Feed efficiency (n = 146) kg DM/kg gain

Me	ean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
9	.4	n.s	0.02	38%	Year/Sex (18%)
					Prev Lact (5%)
					Weaning wt (6%)
					Year/Sex x Weaning wt weaned (3%)
					Year/Sex x Prev Lact (3%)
					Lact Nutr (3%)

Feed efficiency (n = 146) kg DM/kg gain

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
	9.4	n.s	0.02	38%	Year/Sex (18%)
					Prev Lact (5%)
					Weaning wt (6%)
					Year/Sex x Weaning wt weaned (3%)
					Year/Sex x Prev Lact (3%)
					Lact Nutr (3%)
Adj. for	9.4	n.s.	n.s.	32%	Year/Sex (19%)
feedlot					Wfe (6%)
entry wt					Prev Lact (5%)
(Wfe)					Wfe x Year/Sex (3%)

Carcass and yield at 30 mo. (n = 228) \overrightarrow{B}

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Carcass wt (kg)	382	2.7	0.5	70%	Birth Wt (36%) Weaning Wt (11%)

Carcass and yield at 30 mo. (n = 228) B_{EE}

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Carcass wt (kg)	382	2.7	0.46	70%	Birth Wt (36%) Weaning Wt (11%)
Retail yield (kg)	249	2.0	0.03	70%	Birth Wt (37%) Weaning Wt (5%) Preg. Nutr. (0.7%)

Carcass and yield at 30 mo. (n = 228) B_{EE}

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Carcass wt (kg)	382	2.7	0.46	70%	Birth Wt (36%) Weaning Wt (11%)
Retail yield (kg)	249	2.0	0.03	70%	Birth Wt (37%) Weaning Wt (5%) Preg. Nutr. (0.7%)
Fat trim (kg)	55.4	n.s.	0.10	57%	Weaning Wt (24%)

Carcass and yield at 30 mo. (n = 228) B_{EE}

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Carcass wt (kg)	382	2.7	0.46	70%	Birth Wt (36%) Weaning Wt (11%)
Retail yield (kg)	249	2.0	0.03	70%	Birth Wt (37%) Weaning Wt (5%) Preg. Nutr. (0.7%)
Fat trim (kg)	55.4	n.s.	0.10	57%	Weaning Wt (24%)
Bone (kg)	67.6	0.5	0.07	70%	Birth Wt (17%) Weaning Wt (4%)

Yield at 376 kg Cold Carcass Wt (n = 228)

_	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Retail yield (kg)	249	n.s.	-0.06	95%	Weaning Wt (1%)
Fat trim (kg)	55.4	n.s.	0.08	64%	Weaning Wt (24%)
Bone (kg)	67.6	n.s.	n.s.	87%	_

Marbling & Ossification (n = 228)

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
USDA Marble score	446	n.s.	n.s.	41%	Breed (39%)
LD IMF%	6.94	n.s.	n.s.	45%	Breed (43%)
MSA ossification score	200	n.s.	n.s.	68%	Sex (66%)

H&E stain: Courtesy of D. Gerrard in Greenwood *et al.* (1999)

Longissimus myofibres (352 kg carcass wt, heifer cohort, n = 73)

Immunocytochemical staining of myofibres in ruminant muscle:

- s = type 1 (slow)
- c = type 2C (slow/fast oxidativeglycolytic intermediate)
- a = type 2A (fast oxidative-glycolytic)
- ax = type 2AX (fast oxidativeglycolytic/ fast glycolytic intermediate)
- x = type 2X (fast glycolytic)

Longissimus myofibres (352 kg carcass wt, heifer cohort, n = 73)

% myofibre area	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ² ; Terms
Type 1	22.2	n.s.	n.s.	17%: G
Type 2C	0.6	n.s.	n.s.	0%
Type 2A	22.8	n.s.	n.s.	21%: G
Type 2AX	5.9	n.s.	n.s.	0%
Type 2X	48.4	n.s.	n.s.	21%: G

Striploin meat quality (n = 228)

(382 kg carcass weight)

	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Shear force (N)	39.7	n.s.	n.s.	14%	S,Y
Compression (N)	14.1	n.s.	n.s.	29%	S,G,Y
Cooking loss (%)	21.5	n.s.	n.s.	66%	S,Y,A
Ultimate pH	5.48	n.s.	n.s.	29%	S,Y
Lightness (L)	39.8	0.07	n.s.	11%	G,Y Birth Wt (2.3%)
Red/green (a)	26.5	n.s.	n.s.	8%	Y
Yellow/blue (b)	13.7	n.s.	n.s.	5%	Y
Robinson <i>et al</i> . (2013)				<i>et al</i> . (2013)	

Eye round meat quality (n = 228)

(382 kg carcass wt)

_	Mean	Birth wt (Δ/kg)	Weaning wt (Δ/kg)	Model R ²	Terms (r ²)
Shear force (N)	46.1	n.s.	n.s.	42%	S,Y,G
Compression (N)	22.4	-0.01	n.s.	35%	S,Y Birth Wt (1.6%)
Cooking loss (%)	21.3	n.s.	n.s.	70%	S,Y

Severe Growth Restriction

	Prenatal	Pre-weaning
Pre-weaning growth	\downarrow	
Backgrounding growth	\downarrow	\uparrow
Feedlot growth	\downarrow	\leftrightarrow
Feedlot efficiency	\leftrightarrow	\leftrightarrow
Carcass weight & yield	\downarrow	\checkmark
Age at specification	\uparrow	\uparrow
	anverse weight (20	$DO(k_{\sigma})$

At equivalent carcass weight (~380 kg)

Carcass fatness	\leftrightarrow	↓*
Marbling	\leftrightarrow	\leftrightarrow
Retail yield	\leftrightarrow	^ *
Ossification	\leftrightarrow	\leftrightarrow
Beef quality	\leftrightarrow	\leftrightarrow
* Opposite may occur if recovered on conce	ntrates for prolonged perio	od

Pasture vs feedlot "recovery" % Carcass Fat at ~ 400 kg LW Pre-weaning nutrition

Post-weaning	High	Low	
Pasture	23.8	23.6	
Intensive	29.9a	34.1b	

Tudor et al. (1980)

Conclusions

- Feed cows to ensure survival and to optimise capacity to re-breed (weaning rate)
- If severe growth-retardation occurs the time to market weight may be longer
- Carcasses and beef quality were little affected in our pasture-based systems

Conclusions

Hence, beyond effects related to size:

Few long-term effects of cow nutrition during pregnancy &/or fetal growth on commercial characteristics of offspring within our pasture-based system

Conclusions

- Few interactions with genotype
- Few interactions between prenatal and pre
 - weaning nutrition or growth
- Better maternal nutrition more profitable in

our systems (Alford et al. 2009)

Concluding Remarks

 Present study = severe, chronic nutritional restriction & prolonged recovery on pasture • Effects may also occur as a result of: -acute &/or specific influences within developmental windows -carry-on effects in accelerated or concentrate-based systems

Concluding Remarks

- Consideration also needs to be given to:
 - maternal genotype and frame size
 - weight cycling: Freetly, Ferrell and Jenkins (2000, 2005)
 - lactation (confounding of fetal programming)
 - subsequent reproductive capacity
 - production system and market end-points
 - economics of production systems (Alford *et al.* 2009)

Concluding Remarks

 Soft carcass tissues are highly plastic & have strong capacity to recover, especially given adequate time (epigenetics)

 Much variation remains to be explained, commercially and biologically

Acknowledgements

- NSW Department of Primary Industries
 - Grafton Agricultural Research & Advisory Station
 - Glen Innes Agricultural Research & Advisory Station
 - Beef Industry Centre, Armidale
- Beef CRC 'Tullimba' feedlot
- University of New England Meat Science Laboratory
- CSIRO Livestock Industries
- John Dee abattoir
- Meat & Livestock Australia
- Dr Brigitte Picard, INRA

