

# Model comparison based on genomic predictions of litter size and piglet mortality

X. Guo, O. F. Christensen, T. Ostersen, D. A. Sorensen, Y. Wang, M. S. Lund, G. Su









#### **Profile**

- Xiangyu (Carol)
  - > Ph.D student



- > Center for Quantitative Genetics and Genomics
- > Department of Molecular Biology and Genetics
- > Aarhus University, Denmark



#### **Outline**

- > Introduction
- Materials & Methods
- Results & Discussion
- Conclusions



#### **Outline**

- > Introduction
- Materials & Methods
- Results & Discussion
- Conclusions



#### Litter size & mortality

- Litter size & mortality
  - > reproductive traits of major economic importance
- Total number born
  - > litter size at weaning \( \bar{1} \) mortality \( \bar{1} \)
- Litter size at d 5
  - > litter size at weaning ↑ mortality ↓







#### **Genomic selection**

- Genomic selection
  - > widely used in livestock breeding
- Advantage of genomic selection
  - > higher accuracy of prediction in pigs
- Single-step
  - > using both genotyped and non-genotyped animals



#### **Objective**

Compare the accuracy of traditional BLUP, genomic BLUP, and single-step methods, for genetic evaluation of litter size and piglet mortality in Danish Landrace and Yorkshire populations



#### **Outline**

- Introduction
- Materials & Methods
- Results & Discussion
- Conclusions





#### Data

#### Phenotypes

- > TNB: total number of piglets born
- > LS5: litter size at five days after birth
- > Mort: mortality rate before day 5

#### Genotypes

> Illumina PorcineSNP60 BeadChip

#### Pedigree

> traced back to 1994





### Size of data

|                      | Landrace | Yorkshire |
|----------------------|----------|-----------|
| Birth                | 1998 t   | o 2012    |
| Litter               | 778,095  | 472,001   |
| Sow                  | 309,362  | 190,760   |
| Pedigree             | 332,795  | 207,255   |
| Genotyped individual | 3,445    | 3,372     |
| Boar                 | 1,366    | 1,241     |
| Sow                  | 2,079    | 2,131     |
| Marker               | 38,435   | 38,631    |





### Size of data

|                      | Landrace   | Yorkshire |  |
|----------------------|------------|-----------|--|
| Birth                | 1998 t     | o 2012    |  |
| Litter               | 778,095 47 |           |  |
| Sow                  | 309,362    | 190,760   |  |
| Pedigree             | 332,795    | 207,255   |  |
| Genotyped individual | 3,445      | 3,372     |  |
| Boar                 | 1,366      | 1,241     |  |
| Sow                  | 2,079      | 2,131     |  |
| Marker               | 38,435     | 38,631    |  |



#### Statistical models

#### BLUP

- > pedigree-based relationship matrix
- > all records

#### GBLUP

- > marker-based relationship matrix
- > pseudo records of genotyped animals

#### Single-step

- > combined relationship matrix constructed from marker and pedigree
- > all records





#### Validation

Cut-off birth date: 1st April, 2012

$$r^2 = \frac{cor^2(EBV, y_c)}{h_{y_c}^2}$$

#### **Number of validated animals** 12000 Genotyped Non-genotyped 10000 8000 0009 4000 2000 Landrace **Yorkshire**



#### **Outline**

- Introduction
- Materials & Methods
- Results & Discussion
- Conclusions





### Descriptive statistics and $h^2$

| Breed     | Trait | Average | $h^2$ |
|-----------|-------|---------|-------|
| Landrace  | TNB   | 15.04   | 0.11  |
|           | LS5   | 12.25   | 0.09  |
|           | Mort  | 0.18    | 0.09  |
| Yorkshire | TNB   | 15.54   | 0.09  |
|           | LS5   | 12.54   | 0.08  |
|           | Mort  | 0.18    | 0.09  |





#### Descriptive statistics and $h^2$

| Breed     | Trait | Average | $h^2$ |
|-----------|-------|---------|-------|
| Landrace  | TNB   | 15.04   | 0.11  |
|           | LS5   | 12.25   | 0.09  |
|           | Mort  | 0.18    | 0.09  |
| Yorkshire | TNB   | 15.54   | 0.09  |
|           | LS5   | 12.54   | 0.08  |
|           | Mort  | 0.18    | 0.09  |

> Average TNB, LS5 and Mort were around 15, 12 and 0.18



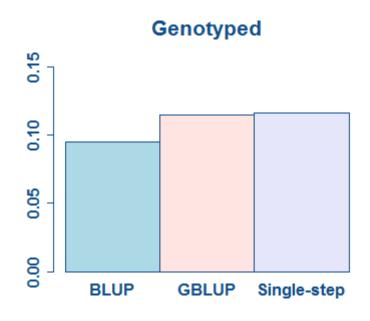


#### Descriptive statistics and $h^2$

| Breed     | Trait | Average | $h^2$ |
|-----------|-------|---------|-------|
| Landrace  | TNB   | 15.04   | 0.11  |
|           | LS5   | 12.25   | 0.09  |
|           | Mort  | 0.18    | 0.09  |
| Yorkshire | TNB   | 15.54   | 0.09  |
|           | LS5   | 12.54   | 0.08  |
|           | Mort  | 0.18    | 0.09  |

- > Average TNB, LS5 and Mort were around 15, 12 and 0.18
- The estimates of heritability were low

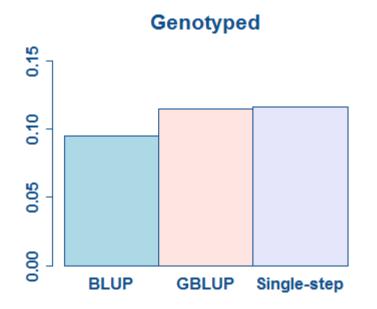


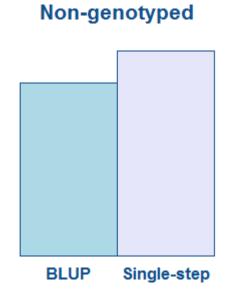



| Dread Trait | All   |      | Genotyped   |      |       | Non-genotyped |      |             |
|-------------|-------|------|-------------|------|-------|---------------|------|-------------|
| Breed       | Trait | BLUP | Single-step | BLUP | GBLUP | Single-step   | BLUP | Single-step |






| D 1 T 1     |       | All         |       | Genotyped |             |       | Non-genotyped |  |
|-------------|-------|-------------|-------|-----------|-------------|-------|---------------|--|
| Breed Tra   | BLUP  | Single-step | BLUP  | GBLUP     | Single-step | BLUP  | Single-step   |  |
| Landrace TN | 0.128 | 0.155*      | 0.095 | 0.115     | 0.116       | 0.126 | 0.150*        |  |








| Breed Trait  | All   |             | Genotyped |       |             | Non-genotyped |                    |
|--------------|-------|-------------|-----------|-------|-------------|---------------|--------------------|
|              | BLUP  | Single-step | BLUP      | GBLUP | Single-step | BLUP          | Single-step        |
| Landrace TNB | 0.128 | 0.155*      | 0.095     | 0.115 | 0.116       | 0.126         | 0.150 <sup>*</sup> |









|           |       |       | All                |       | Genotyped | Non-genotyped |       |             |
|-----------|-------|-------|--------------------|-------|-----------|---------------|-------|-------------|
| Breed 1   | Trait | BLUP  | Single-step        | BLUP  | GBLUP     | Single-step   | BLUP  | Single-step |
| Landrace  | TNB   | 0.128 | 0.155 <sup>*</sup> | 0.095 | 0.115     | 0.116         | 0.126 | 0.150*      |
|           | LS5   | 0.071 | 0.081              | 0.004 | 0.080     | 0.018         | 0.072 | 0.079       |
|           | Mort  | 0.066 | 0.086*             | 0.030 | 0.229*    | 0.205*        | 0.068 | 0.081*      |
| Yorkshire | TNB   | 0.148 | 0.178*             | 0.251 | 0.241     | 0.451         | 0.143 | 0.163*      |
|           | LS5   | 0.061 | 0.083*             | 0.120 | 0.245     | 0.334         | 0.059 | 0.074*      |
|           | Mort  | 0.074 | 0.085              | 0.044 | 0.115     | 0.128         | 0.076 | 0.084       |
| Mean      | 1     | 0.091 | 0.111              | 0.091 | 0.171     | 0.209         | 0.091 | 0.105       |

Methods with marker information provided more accurate predictions





|            |       |       | All         |       | Genotyped | Non-genotyped |       |                    |
|------------|-------|-------|-------------|-------|-----------|---------------|-------|--------------------|
| Breed Trai | Trait | BLUP  | Single-step | BLUP  | GBLUP     | Single-step   | BLUP  | Single-step        |
| Landrace   | TNB   | 0.128 | 0.155*      | 0.095 | 0.115     | 0.116         | 0.126 | 0.150 <sup>*</sup> |
|            | LS5   | 0.071 | 0.081       | 0.004 | 0.080     | 0.018         | 0.072 | 0.079              |
|            | Mort  | 0.066 | 0.086*      | 0.030 | 0.229*    | 0.205*        | 0.068 | 0.081*             |
| Yorkshire  | TNB   | 0.148 | 0.178*      | 0.251 | 0.241     | 0.451         | 0.143 | 0.163*             |
|            | LS5   | 0.061 | 0.083*      | 0.120 | 0.245     | 0.334         | 0.059 | 0.074*             |
|            | Mort  | 0.074 | 0.085       | 0.044 | 0.115     | 0.128         | 0.076 | 0.084              |
| Mear       | 1     | 0.091 | 0.111       | 0.091 | 0.171     | 0.209         | 0.091 | 0.105              |

- Methods with marker information provided more accurate predictions
- Single-step method provided most accurate predictions



#### **Outline**

- Introduction
- Materials & Methods
- Results & Discussion
- Conclusions





#### Conclusions

- Genomics can increase reliabilities of EBV for litter size and piglet mortality
- Increased reliabilities were observed for genotyped as well as for non-genotyped animals
- Single-step is a useful method for practical genomic prediction





#### Thanks for your attention

Ole F. Christensen

Tage Ostersen

Daniel A. Sorensen

Yachun Wang

Mogens S. Lund

Guosheng Su







#### Take-home messages

- Genomics can increase reliabilities of EBV for litter size traits and piglet mortality
- Increased reliabilities were observed for genotyped as well as for non-genotyped animals
- Single-step is a useful method for practical genomic prediction