

ACKNOWLEDGEMENTS

BACKGROUND

Most of the animals used in livestock production systems are crossbreds

- Limitations
 - Selection is in purebred nucleus lines or breeds that are housed in high-health environments
 - Genetic differences

BACKGROUND

- Genomic selection
- Training on crossbreds
 - Collection of crossbred P and G
 - SNP effects might be breed specific
- Training on pure lines
 - Environmental differences between purebreds and crossbred animals
 - GxE

OBJECTIVE

To compare crossbred response by variety of training populations

To investigate the benefits of distinguishing two types of heterozygotes in crossbreds

SIMULATION STEPS

SIMULATION STEPS

Generations

1

5

SIMULATION PARAMETERS

Number of chromosomes	1
Genome size	100 cM
Number of markers	1000
Number of QTL	100
Additive effects for QTL	Gamma
Dominance degrees (h _i)	Normal
Dominance effects for QTL	d _i =h _i . a _i
Heritability	0.4 (0.3,0.1)

SCENARIOS

Scenarios	Training	
Sc. 1	Separate (A, B)	
Sc. 2	Combined (A+B)	
Sc. 3	Crossbreds (F ₁) P	
Sc. 4	Crossbreds (F ₁) P	M_1M_2/M_2M_1
Sc. 5	Crossbreds (F ₁) P+G	
Sc. 6	Crossbreds (F ₁) P+G	M_1M_2/M_2M_1
	AA-Aa-aa AA-Aa-aA-aa	

CORRELATION OF PHASE

CUMULATIVE RESPONSE TO SELECTION IN CROSSBREDS

HETEROSIS

CONCLUSION

Thank YOU!

- Training on crossbred progeny gives higher response to selection than training on pure lines
- Distinguishing two types of heterozygotes would increase response to selection
- If correlation of phase between two breeds is low, joining breeds won't help

$$E(r) = r_0^2 (1 - c)^{2T}$$

- r_0^2 is LD in the common ancestral population
- c is the recombination rate between markers
- T is the time since breed divergence in generations

Selection criteria

GEBVP: Genomic Estimated Breeding value for PUREBRED **GEBVC:** Genomic Estimated Breeding value for CROSSBRED

A_1A_2		
Breed A	Breed B	
p _A q _A	p_Bq_B	

Breed B
$$A_{1}A_{1} \times A_{1}A_{1}$$

$$A_{1}A_{2}$$

$$A_{2}A_{2}$$

$$A_{2}A_{2}$$

$$A_{3}A_{4}$$

$$A_{1}A_{2}$$

$$A_{2}A_{2}$$

$$A_{2}A_{3}$$

$$A_{3}A_{4}$$

$$A_{4}A_{5}$$

$$A_{5}A_{2}$$

$$A_{6}A_{1}A_{1}$$

$$A_{1}A_{2}$$

$$A_{2}A_{3}$$

$$A_{3}A_{4}$$

$$A_{4}A_{5}$$

$$A_{5}A_{6}$$

$$A_{6}A_{1}A_{1}$$

$$A_{1}A_{2}$$

$$A_{2}A_{3}$$

$$A_{3}A_{4}$$

$$A_{4}A_{5}$$

$$A_{5}A_{2}$$

$$A_{6}A_{1}A_{1}$$

$$A_{1}A_{2}$$

$$A_{6}A_{1}A_{1}$$

$$A_{1}A_{2}$$

$$A_{6}A_{1}A_{1}$$

$$A_{1}A_{2}$$

$$A_{1}A_{2}$$

$$A_{2}A_{3}$$

$$A_{3}A_{4}$$

$$A_{4}A_{5}$$

$$A_{5}A_{6}$$

$$A_{6}A_{1}A_{1}$$

$$A_{6}A_{1}A_{2}$$

$$A_{7}A_{2}$$

$$A_{7}A_{2}$$

$$A_{8}A_{1}A_{2}$$

Results

LD

Average r^2 = 0.43 Breed A 0.42 Breed B

PREDICTION ACCURACY

