Factors affecting metabolites in lambs at slaughter

Sarah Stewart

Peter McGilchrist, Graham Gardner and Dave Pethick
Tuesday 26th August 2014 - Session 25

Outline

- Metabolic indicators of acute preslaughter stress
- Previous findings in cattle
- Hypothesis
- Factors influencing metabolites in lamb
- Future research link metabolites to meat quality and yield

Metabolic indicators of stress

Immediately Pre-slaughter

- Human contact
- Social mixing
- Physical activity
- Novel environments

Metabolic indicators of stress

Muscle/liver glycogenolysis Adipose tissue lipolysis

Plasma lactate and glucose

Metabolic indicators @ slaughter

	Mean ± SD mmol/L	
Lactate	9 ± 3.2 (3 → 37)	
Glucose	7 ± 1.1 (4.7 → 11.6)	
NEFA	$0.4 \pm 0.2 (0.09 \rightarrow 1.2)$	

(Polkinghorne et al in press 2014; Pethick and McGilchrist 2011, Small and Ferguson 2011)

Metabolic indicators @ claughter

Lactate

Glucose

NEFA

(Polkinghorne et al in press 2014; Pethick and McGilchrist 2011, Small and Ferguson 2011)

- Metabolites (lactate, glucose, NEFA) at slaughter will be influenced by
 - Flock
 - Killgroup
 - Breed type (merinos)
 - Time/order of slaughter
- Expect similar results to beef cattle @ slaughter (uncontrolled hypothesis!)

Methods

- Prime Lambs n = 1436
- Blood collected at slaughter
- Sheep CRC/MLA genetic FLOCKS x 2
- ~ 200 sires (AI dams)
- Extensively managed
- Killgroups x 14
- 21 hrs off feed
 - 2 hours curfew on farm
 - 0.5- 2hours transport
 - ~ 17 hours in lairage

Methods - Analysis

Mixed Linear effect models

Dependent variables

Lactate

Glucose

NEFA

Random terms

Sire ID

Dam ID

Fixed Effects

Flock

Killgroup

Siretype

Birthtype Reartype

Age of dam

Covariates

Killorder

HCWT

Methods - Analysis

Mixed Linear effect models

Dependent variables

Lactate

Glucose

NEFA

Random terms

Sire ID

Dam ID

Fixed Effects

FLOCK

KILLGROUP

SIRETYPE

Birthtype Reartype

Age of dam

Covariates

Killorder

HCWT

Methods - Analysis

= Time/order of slaughter

- ~6 lambs/min
- Exposure to acute stress
- Flock hierarchy

Dam ID

Fixed Effects

Flock

Killgroup (flock)

Siretype

Birthtype Reartype

Age of dam

Covariates

KILLORDER

HCWT

Results

A	BASAL LEVELS (mmol/L)
Glucose	2.5-5.0
Lactate	<0.5
NEFA	0.02-0.05

Results

	SLAUGHTER LEVELS (mmol/L)	BASAL LEVELS (mmol/L)
Glucose	4.9 ± 0.9 (2.5 – 8.7)	2.5-5.0
Lactate	4.2 ± 2.5 (0.6 – 16)	<0.5
NEFA	1.1 ± 0.5 (0.2 – 2.8)	0.02-0.05

Results

Glucose	4.9 ± 0.9 (2.5 – 8.7)	6.9 ± 1.1 (4.7 → 11.6)
Lactate	4.2 ± 2.5 (0.6 – 16)	9.5 ± 3.2 (3.0 → 37)
NEFA	1.1 ± 0.5 (0.2 – 2.8)	0.4 ± 0.2 $(0.09 \rightarrow 1.2)$

- Metabolites (lactate, glucose, NEFA) at slaughter will be influenced by
 - -Flock
 - Killgroup
 - Breed type (merinos)
 - Time/order of slaughter
- Expect similar results to beef cattle @ slaughter (uncorrelled hypothesis!)

What factors affected metabolites?

	LACTATE	GLUCOSE	NEFA
Flock	✓	✓	✓
Killgroup	✓	✓	✓
Killorder	✓	✓	✓
Siretype	✓	*	✓
Sire	√	•	√

Flock effect

Killgroup effect

What factors affected metabolites?

	LACTATE	GLUCOSE	NEFA
Flock	✓	✓	✓
Killgroup	✓	✓	✓
Killorder	✓	✓	
Siretype	✓	*	✓
Sire	✓	√	√

- Metabolites (lactate, glucose, NEFA) at slaughter will be influenced by
 - -Flock
 - -Killgroup
 - -Breed type (merinos)

–Time/order of slaughter

Merinos have higher lactate

- Metabolites (lactate, glucose, NEFA) at slaughter will be influenced by
 - -Flock
 - -Killgroup
 - -Breed type (merinos)
 - —Time/order of slaughter

- Metabolites (lactate, glucose, NEFA) at slaughter will be influenced by
 - -Flock
 - -Killgroup
 - –Breed type (merinos)
 - -Time/order of slaughter

P<0.05

Killorder – Lactate Acute stress Lactate release **Acclimation** in blood Plateau Lactate (mmol/L) 50 100 150 200 250 0 300 Killorder

P<0.05 Killorder – glucose **Acute stress** 7 6 mmol/T/ 6 3 2 50 100 150 200 250 300 **Killorder**

P<0.05

Killorder - NEFA

- Metabolites (lactate, glucose, NEFA) at slaughter will be influenced by
 - -Flock
 - -Killgroup
 - –Breed type (merinos)
 - -Time/order of slaughter 💙

Summary

- Variation in metabolites exists between flocks and killgroups
 - Abattoir
 - Pre-slaughter management
- Breed type and genetic (sire) effects
- Killorder influenced metabolites
 - Exposure to acute stress
 - Hierarchy effect

Further work

- Suite of physiological parameters @ slaughter
- Relate to carcass and meat quality
 - Yield and composition
 - Shear force, IMF, colour, pHu
 - Sire genetics
 - Consumer sensory panels
- Biomarkers of lamb meat quality and yield
- Best practice pre-slaughter management

Thank you!