Blood transcriptome kinetic response to LPS in pigs

E. Merlot, A. Prunier, M. Damon, Florence Vignoles, Nathalie Villa-Vialaneix, P. Mormède, E. Terenina

Response to inflammation in pigs

Inflammatory model using *E.coli* lipopolysaccharide (LPS):

- Immune response
 - (inflammatory cytokines, acute phase proteins, fever)
- Metabolic response
 (hypoglycaemia, hyperlipidemia)
- Endocrine response

(stress hormones: catecholamines, cortisol)

Can we have a global view of the response to inflammation using blood transcriptome?

- Can we observe the time-response to LPS?
- Can we observe not only the immune but also the endocrine and metabolic responses?

Blood mRNA => immune cells: lymphocytes (T, B, NK), polynuclear cells, monocytes

Material and methods

i.v. LPS (O55:B5, 15µg/kg) in pigs fasted for 6 h

Blood sampling

Measurements

• Blood sampling at 4 time points (-30min, 1h, 4h and 24h post LPS)

• Differential blood cell count

•Transcriptome analysis (on 7 pigs only) using the 60K agilent microarray

•Validation on a set of differentially expressed genes (on 32 pigs) PCR of 52 transcripts using the fluidigm method

Blood cell numbers

- ⇒ LPS induces dramatic variations in blood cell number and lymphocyte / granulocyte ratio
- ⇒ Confusion between the time and L/G effects: a major problem for the interpretation of transcriptomic data

Microarray results

 \Rightarrow 3 719 annotated genes vary along time (Benjamini-Hochberg adjusted P values < 0.01)

Gene ontology enrichment analysis

- •David software, "Biological processes" gene ontology => 46 clusters significant at P<0.05
- •Exclusion of too generic clusters (morphogenesis, transcription, locomotion...)
- Aggregation of the 25 first clusters (638 genes) into 8 "superclusters":

	Super cluster	Nb of clusters	Nb of genes
1	Immunity and inflammation	5	209
2	Chemotaxis	5	196
3	Apoptosis	3	185
4	Ionic transport and Ca metabolism	2	127
5	Metabolism	5	121
6	Hormonal responses	1	111
7	Cell growth	2	71
8	Hemostasis	2	66

« Immunity and inflammation » cluster

- \Rightarrow 209 genes
- ⇒ Inflammatory cascade after activation of leukocytes by LPS via TLR4 receptor (DF genes for TLR4, CD14, IRAK1, NFκB pathway)
- ⇒ Selection of 23 genes for fluidigm PCR:

	Super cluster	Nb of genes	Ex of functions	Ex of genes
1	Immunity and inflammation	23	•Cytokines and receptors •Transcription factors •Immune cell products	•TNFSF13B, IFNGR1, TGFBR1 •NFKB1A, STAT2 •SAA1, AZU1

- \Rightarrow 196 genes
- ⇒ immune cell trafficking: in agreement with the observed blood cell redistribution
- ⇒ Selection of 14 genes for fluidigm PCR:

	Super cluster	Nb of genes	Ex of functions	Ex of genes
2	Chemotaxis	14	Chemokines and receptorsMatrix organization and cell adhesion	•IL8, CCR5 •ADAM10,TGFBI

"Apoptosis" cluster

- \Rightarrow 185 genes
- ⇒ apoptosis: down-regulation of the immune response
- ⇒ Selection of 19 genes for fluidigm PCR:

	Super cluster	Nb of genes	Ex of functions	Ex of genes
3	Apoptosis	19	•Receptors •Intracellular control and execution of apoptosis	•LTBR, TNFRSF1A •BCL2, CASP6

"Metabolism" cluster

- \Rightarrow 121 genes
- \Rightarrow lipid and protein metabolism
- ⇒ Selection of 9 genes for fluidigm PCR:

	Super cluster	Nb of genes	Ex of functions	Ex of genes
5	Metabolism	9	 Antioxydant metabolism Lysosom and proteasome enzymes AA catabolism 	•GSR •GUSB •PSMC5, SDS

"Hormonal responses" cluster

- \Rightarrow 113 genes
- ⇒ immune paracrine / endocrine control of the immune response Cytokines with pseudo-endocrine actions (TNF, IL-1) Prostaglandins and leukotriens
- ⇒ neuro-endocrine control of the immune and systemic responses

 Sympathic (catecholamines, dopamine) and parasympathic (cholinergic) systems

 Oxytocin

Adiponectin receptor, cholesterol and insulin pathways

	Super cluster	Nb of genes	Ex of functions	Ex of genes
6	Hormonal responses	16	 Synthesis of prostanglandins and leukotriens, androgens Catecholamine receptor and degradation 	•PLA2G4A, ALOX12 •HSD17B11 •ADRB2, MAOA

PCR results using fluidigm method

Analysis of the time...

using times points -1 and +4h (where L/G ratios are ~) using the L/G ratio as a covariate

- \Rightarrow 30 genes influenced by the L/G ratio
- ⇒ 40 genes among 52 confirmed to vary between -1h and +4h

	Super cluster	Nb of genes	Down-regulated at 4h / -1h	Up regulated at 4h / -1h
1	Immunity and inflammation	23	11	10
2	Chemotaxis	14	7	7
3	Apoptosis	19	11	5
5	Metabolism	9	7	1
6	Hormonal responses	16	9	5

• Blood transcriptome allows the investigation of blood leucocytes...

Immune response and chemotaxis

(neuro-endocrine stress system and energetic homeostasis)

Lipid and amino-acid metabolism

• However...

Be careful with blood cell redistibution!!

- => only samples with close Lymphocyte / Granulocyte ratio ratio can be compared
- => include it as a covariate in the analysis
- => even the L/G ratio might be too rough

Thank you for your attention!

