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In modern high-producing dairy cows most (70-
80%) of glucose synthesized (around 3 kg per
day) by gluconeogenesis in the liver from VFA is
diverted to the mammary gland

Pair-fed thermal-neutral

i Baumgard LH and Rhoads Ir. RP. 2013,

Annu. Rev, Anim. Biosci. 1:311-337



First: The effect of heat stress is
considered
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Pair-feeding experiments show that the
reduction in milk yield exceed the
reduction in feed intake

Heat-stressed



Heat stress is associated with increase
in insulin sensitivity
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Heat stress is associated by diminished uptake of glucose by the
mammary gland (by up to 1 kg out of 3 kg) and almost complete
stop of NEFA release fro fat (hence their supply to the mammary

gland)
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What are the conclusions from the
per-feeding experiments under heat
stress’?




-“The primary difference between a thermal-neutral and a
heat-stressed animal in a similar energetic state is the inability
of the hyperthermic beast to employ glucose-sparing
mechanisms to homeorhetically prioritize product (milk and
meat) synthesis”.

-In other words, a glucose sparing mechanism is needed to
preserve essential body functions and maintaining their
homeostasis.

-“From an animal agriculture standpoint, these survival
strategies reduce productivity and seriously jeopardize farm
economics. “

-“Defining the biology and mechanisms of how HS threatens
animal health and performance is critical in developing
approaches to ameliorate current production issues and is a
prerequisite for generating future mitigating strategies to
improve animal well-being, performance, and agriculture
economics.”



What is the physiological basis for the
non-feed intake basis for reduction in
milk yield under stress?

The role of milk-born negative feed-
back mechanism



Comparing the effects of prevention of cooling
(sprinkling) and shade and prevention of shade on milk
vield of high-producing cows in the middle of the
summer (THI around 90)
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Secondly: the effect of inflammatory stress is
considered. During acute inflammation, the demand

of the immune system for glucose may increase by up
to 1 kg

Lung tissue infection by
bacteria and their toxins
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Bidirectional communication between immunologically competent
cells and the brain. Upon release of TNF by macrophages, both
humoral and neural signaling initiates brain responses that in turn
exert feedback inhibition on macrophage activity.
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Glucose fluxes during inflammation. The activated macrophage releases
TNF and in so doing allocates glucose preferentially to itself. Glucose
enters macrophages and the brain via GLUT-1, whereas it enters muscle
cells via GLUT-4. Released TNF enhances GLUT-1 and decreases GLUT-4
transport. TNF, IL-1, and IL-6 released from the macrophage centrally
initiate energy-saving sickness behavior.
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Effect of LPS on milk yield (L/d) in treated (circles), control-LPS (triangles), and control-
control (squares) quarters. The results are presented as mean * SD. Values marked by
asterisk are significant at P < 0.001 or lower
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Effect of LPS on lactose (%) concentration in treated (circles), control-LPS (triangles),
and control-control (squares) quarters. Values marked by asterisk are significant at
P < 0.001 or lower.
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Influence of LPS on the gene expression of transport proteins and channel proteins
required to supply raw materials for milk. Expression levels of SLC1A4 (A), SLC7A1
(B), SLC27A3 (C), AQP3 (D), and GLUT-1 (E) in mammary glands non-treated (0 h)
and at 3, 6, and 12 h after LPS injection were quantified by real-time PCR. Data
represent the mean (SD) (n=6). *, p<0.05; **, p <0.005 vs. O h.

Kobayashi et al. Veterinary Research 2013
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Influence of LPS on the expression of genes related with milk component synthesis.
Expression levels of UGP2 (A), PGM2 (B), a-lactaloumin (C), FABP3 (D), SREBP-1 (E), CSN1S1
(F), CSN2 (G), CSN3 (H), WAP (1), and lactoferrin (J) in mammary glands non-treated (0 h) and
at 3, 6, and 12 h after LPS injection were quantified by real-time PCR. Data represent mean
(SD) (n=6). *, p<0.05; **, p<0.005 vs. 0 h.
Kobayashi et al. Veterinary Research 2013
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Concentrations (mean + SE) of lactate, malate, citrate, nitrite, lactoferrin, and albumin and activity of lactate
dehydrogenase in milk of cows approaching natural involution (ANI) or forceful involution (AFI) before the
induction of involution (milk cessation) and during the first 3 d after the induction of involution

Citrate:(lactat Lactate
Treatment Lactate Malate Citrate ’ o Nitrite dehydrogenas Lactoferrin Albumin
and time2 (uM) (LM) (mM) (uM) e (ng/mL) (ng/mL)
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(U/mL)
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od 115 +12¢ 216 + 32¢ 13.1+12 39.6 £3.32 225 +23b 84 + 64 179 + 484 172 + 394
1d 105 £ 8¢ 297 +21b 142 + 12 35.3+3.32 245 + 270 113 + 74 185 + 384 174 + 404
2d 147 £ 13¢ 239 + 150 141+ 12 36.5+2.62 233 +22b 267 + 6¢ 187 + 434 175 + 414
3d 122 £ 9¢ 255 + 690 140+ 12 37.1+£2.32 300 + 3120 478 + 385 182 + 494 174 + 514



Effect of subclinical mastitis by coagulase negative staphylococci (CNS) and

Streptococci( Strep.) and previous clinical infection with Escherichia coli( Esch. coli) on

milk yield, milk conductivity and somatic cell count (SCC) on the whole cow level
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Effect of subclinical mastitis by coagulase negative staphylococci (CNS) and
Streptococci( Strep.) and previous clinical infection with Escherichia coli(
Esch. coli) on somatic cell count (SCC), gross milk composition (fat, protein

and lactose), rennet clotting time (RCT), curd firmness (CF) and the

concentrations of lactate, malate and citrate on a gland level
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Linear correlations among glucose (Glu), lactose,
glucose-6-phospate (Glu-6-p), citrate/lactate+malate

(CA/LA+MA), Glu-6-p/Glu, log SCC and CF. All the data
set on the gland level was applied
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Effect of intrammary infection with
live strain of E. coli that cause
transient acute mastitis
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Proposed model of link between metabolic activity of mammary tissue and blood flow rate. Solid
arrows represent mass flux and dashed arrows represent effector mechanisms; + and - represent
activation and inhibition, respectively. ADO = adenosine, ARA = arachidonic acid, ARG = arginine,
INDO = indomethacin, L-NAME = N_-nitro-L-arginine methyl ester hydrochloride, NO = nitric
oxide, PGl, = prostacyclin, VDC = vasodilatory compounds. Cieslar et al., 2014, JDS
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Blocking the pass of pyruvate to the mitochondria and increase in the
activities of f cytosolic LDH and MDH explain the increase secretion of lactate
and malate into milk. These changes are associated with dramatic reductions

in NADH/NAD and ATP/ADP ratios
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glucose + 2ADP +2P; + 2 NAD = 2 pyruvate + 2 ATP +2

Pseudohypoxia refers to increased cytosolic
ratio of free NADH to NAD in cells. Research has
shown that declining levels of NAD+ in cancer
cells and during aging cause pseudohypoxia,
and that raising nuclear NAD+ in old mice
reverses pseudohypoxia and metabolic
dysfunction, thus reversing the aging process
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Metabolic reprogramming induced by
HIF-1.
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Conclusions

. The first response to stress is blocking the penetration of pyruvate
into the mitochondria and consequently accumulation of pyruvate in
the cytosol and conversion of the oxidative/reductive co-factor from
high normal NAD/NADH ratio to high of NADH/NAD ratio in the
cytosol and mitochondria

. High NADH/NAD ratio induce the conversion of the mammary gland
epithelial cells metabolism into pseudohypoxic glycolysis (The
Warburg effect). The increased formation of lactate and malate
restore the oxidative/reductive co-factor into high NAD/NADH ratio
and allow the resolution of the stress

. The order of events can be revealed by the kinetics changes in the
concentration of Glu, Glu-6-p, pyruvate, lactate, malate, citrate and
oxaloacetate in milk and respective enzymes, LDH and Glu-6- p
dehydrogenase

. The changes in the concentration of these metabolites is closely
associated with milk production and quality (curdling)



TLR4-dependent inflammatory mediators affect lactation mastitis and milk supply.
Perturbed milk flow, maternal stress, genetic predisposition and sleep deprivation can
lead to accumulation of danger-associated molecular patterns (DAMPs) and
heightened TLR4 signaling (or equivalent receptors) in the mammary gland, leading to
increased susceptibility to mastitis and increased severity of the disease. Importantly,
activation of NFkB could lead to partial mammary gland involution and may be
responsible for the reduced milk supply associated with mastitis
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Sirtuin enzymes are a conserved family of nictotinamide adenine
dinucleotide (NAD)-dependent deacetylases and ADP-
ribosyltransferases that regulate lifespan in lower organisms, and
mediate responses to fasting and dietary restriction (DR) in
mammals
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The Warburg effect is an essential homeostatic
response for animal ability to survive under acute
stress. Prevention of its development into chronic
situations is important for maintaining health and
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