Everyday Multithreading Parallel computing for genomic evaluations in *R*

C. Heuer, D. Hinrichs, G. Thaller

Institute of Animal Breeding and Husbandry, Kiel University

August 27, 2014

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Introduction

Introduction

C. Heuer, D. Hinrichs, G. Thaller Parallel Computing in R August 27, 2014 2 / 17

Introduction

- High Dimensional livestock data sets
- New computational challenges
- Paradigm shift in breeding programs and computing

Introduction

- From sparse to dense MME (or mixtures)
- High storage, memory and computing demands

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Introduction

- High Dimensional livestock data sets
- New computational challenges
- Paradigm shift in breeding programs and computing
- From sparse to dense MME (or mixtures)
- High storage, memory and computing demands
- Solution: Making use of available hardware resources by parallel computing

Introduction

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Parallel Computing

What parallel computing is:

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

What parallel computing is:

Splitting up a big problem into chunks that are simultaneously being solved by several processing units

Parallel Computing

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

What parallel computing is:

Splitting up a big problem into chunks that are simultaneously being solved by several processing units

Parallel Computing

-0.09		-0.92		[-1.01]
-0.65		0.41		-0.24
-0.08		-0.76		-0.83
-0.95		-1.61		-2.56
-0.02		1.09		1.07
-0.59		-0.33		-0.92
-0.55	+	0.83	=	0.27
0.37		3.21		3.58
-0.05		1.29		1.23
-0.16		-0.82		-0.98
0.59		-1.23		-0.64
0.55				_1.64

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

What parallel computing is:

Splitting up a big problem into chunks that are simultaneously being solved by several processing units

Parallel Computing

[-0.09]	-0.92	[-1.01]
-0.65	0.41	-0.24
-0.08	-0.76	-0.83
-0.95	 -1.61	-2.56
-0.02	1.09	1.07
-0.59	-0.33	-0.92
-0.55	 0.83	 0.27
0.37	3.21	3.58
-0.05	1.29	1.23
-0.16	 -0.82	 -0.98
0.59	-1.23	-0.64
		_1.64

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Parallel Computing

 $\textcircled{O} Most importantly: Single Core parallelism \rightarrow \textbf{Vectorization}$

Parallel Computing

- ② Shared Memory multi-threading $\rightarrow OpenMP$
- $\textcircled{O} Distributed Memory multi-processing} \rightarrow \textit{MPI}$

C. Heuer, D. Hinrichs, G. Thalle

Parallel Computing in R

- $\textbf{ 0 Most importantly: Single Core parallelism} \rightarrow \textbf{Vectorization}$
- ② Shared Memory multi-threading $\rightarrow OpenMP$
- $\textcircled{O} Distributed Memory multi-processing} \rightarrow MPI$
- $\ensuremath{\textcircled{\textbf{GPU-programming}}} \rightarrow \textit{CUDA},\textit{OpenCL},\textit{Intel Xeon-Phi}$

Efficiency/Scaling:

- Depends on size of the problem: Overhead
- The less efficient a single-threaded application, the better the scaling

Parallel Computing

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

- $\textbf{ 0 Most importantly: Single Core parallelism} \rightarrow \textbf{Vectorization}$
- ② Shared Memory multi-threading $\rightarrow OpenMP$
- $\textcircled{O} Distributed Memory multi-processing} \rightarrow MPI$
- $\ensuremath{\textcircled{\textbf{GPU-programming}}} \rightarrow \textit{CUDA},\textit{OpenCL},\textit{Intel Xeon-Phi}$

Efficiency/Scaling:

- Depends on size of the problem: Overhead
- The less efficient a single-threaded application, the better the scaling

Parallel Computing

• In general: First single-threaded optimization then parallelization

C. Heuer, D. Hinrichs, G. Thaller

llel Computing in R

R-package *cpgen*

C. Heuer, D. Hinrichs, G. Thaller Parallel Computing in R August 27, 2014 6 / 17

R-package cpgen

Advantages of R:

Very flexible open source interpreter language

Easy to use, available on all platforms and widely spread

Drawbacks of R:

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

R-package cpgen

Advantages of R:

- Very flexible open source interpreter language
- 2 Easy to use, available on all platforms and widely spread

Drawbacks of R:

- Not designed for big data problems
- $\textcircled{O} \text{ Needs a lot of effort to extend } \mathsf{R}$
- Strictly single-threaded

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

R-package cpgen

Advantages of R:

- Very flexible open source interpreter language
- 2 Easy to use, available on all platforms and widely spread

Drawbacks of R:

- Not designed for big data problems
- Needs a lot of effort to extend R
- Strictly single-threaded

But: Can be extended and multi-threaded through C/C++/Fortran shared libraries

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

General Implementation

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

General Implementation

- **1** R as the basic environment for data preparation and supply
- 2 Linking C++ to R: *Rcpp* (Eddelbuettel and Francois, 2011)
- Linear Algebra: $Eigen \rightarrow$ Vectorization! (Guennebaud et al., 2010)
- Sigen + Rcpp + Sparse-Matrix support: *RcppEigen* (Bates and Eddelbuettel, 2013)
- Parallelization: OpenMP

C. Heuer, D. Hinrichs, G. Thaller

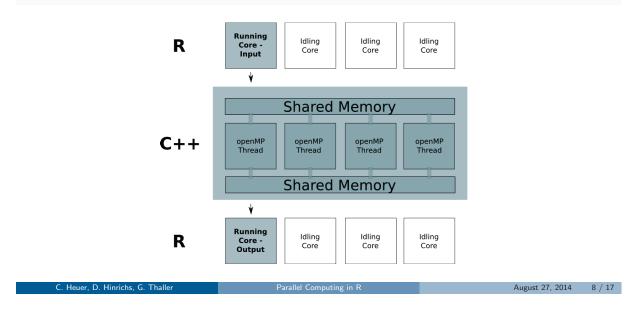
Parallel Computing in R

Parallel Computing in cpgen

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Parallel Computing in cpgen



Functionality

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Functionality

- Single-Site Gibbs Sampler for Mixed Models with arbitrary number of random effects (sparse or dense design matrices)
- **②** Genomic Prediction Module: Different Methods, Cross Validation
- SWAS Module: EMMAX highly efficient and very flexible single marker GWAS
- Tools: Genomic additive and dominance relationships, Crossproducts, Covariance Matrices, . . .

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Gibbs Sampler

Runs models of the following form:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_1\mathbf{u}_1 + \mathbf{Z}_2\mathbf{u}_2 + \mathbf{Z}_3\mathbf{u}_3 + \ldots + \mathbf{Z}_n\mathbf{u}_n + \mathbf{e}$$

- For all u_k : $MVN(\mathbf{0}, \mathbf{I}\sigma_{u_k}^2)$
- If u_k is assumed to follow some $MVN(\mathbf{0}, \mathbf{G}_k \sigma_k^2)$:

Design matrix must be constructed as: $\mathbf{Z}_k = \mathbf{Z}_k \mathbf{G}^{1/2}$, yielding independent effect in \mathbf{u}_k (Waldmann et al., 2008).

C. Heuer, D. Hinrichs, G. Thalle

Parallel Computing in R

Genomic BLUP

GBLUP can be accomplished very efficiently (Kang et al., 2008):

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{a} + \mathbf{e}$$
 with: $\mathbf{a} \sim MVN(\mathbf{0}, \mathbf{G}\sigma_a^2)$

By finding the decomposition: ${\bm G} = {\bm U} {\bm D} {\bm U}'$ and premultiplying the model equation by ${\bm U}'$ we get:

$$U'y = U'Xb + U'a + U'e$$

with:

$$Var(\mathbf{U}'\mathbf{y}) = \mathbf{U}'\mathbf{G}\mathbf{U}\sigma_a^2 + \mathbf{U}'\mathbf{U}\sigma_e^2$$
$$= \mathbf{U}'\mathbf{U}\mathbf{D}\mathbf{U}'\mathbf{U}\sigma_a^2 + \mathbf{I}\sigma_e^2$$
$$= \mathbf{D}\sigma_a^2 + \mathbf{I}\sigma_e^2$$

Parallel Computing in R

C. Heuer, D. Hinrichs, G. Thaller

GWAS

- Single marker regression
- Controlling for polygenic background effect through [assumed] covariance structure V of y - EMMAX (Kang et al., 2010)
- Obtaining General Least Squares estimates for marker effects:

$$\hat{eta} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}$$

This is equivalent to:

$$\hat{\beta} = (\mathbf{X}^{*'}\mathbf{X}^{*})^{-1}\mathbf{X}^{*'}\mathbf{y}^{*}, \text{ with } \mathbf{X}^{*} = \mathbf{V}^{-1/2}\mathbf{X}, \ \mathbf{y}^{*} = \mathbf{V}^{-1/2}\mathbf{y}$$

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Parallel Computing in cpgen

What is parallelized:

- All crossproduct-like computations
- Sampling of random effects in Gibbs Sampler (dot product, vector-vector subtraction) \rightarrow Fernando et al., 2014
- Oross Validation for genomic prediction
- GWAS

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Parallel Computing in cpgen

What is parallelized:

- All crossproduct-like computations
- Sampling of random effects in Gibbs Sampler (dot product, vector-vector subtraction) \rightarrow Fernando et al., 2014
- Oross Validation for genomic prediction
- GWAS

Number of threads being used can be controlled during runtime

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

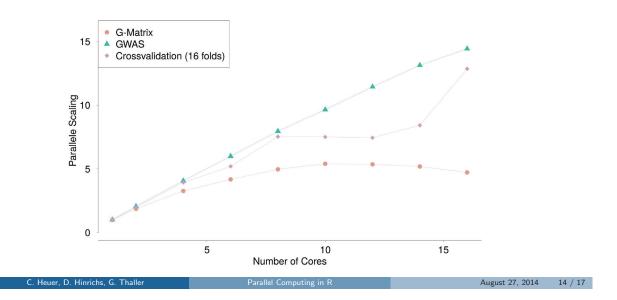
2,000 Observations, 50,000 Markers

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Parallel Scaling

2,000 Observations, 50,000 Markers



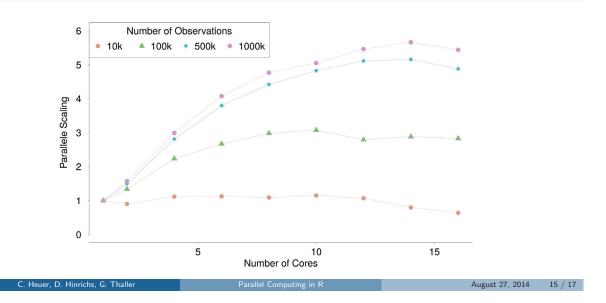
Parallel Scaling

Gibbs Sampler (BRR) - 10,000 Markers

Parallel Scaling

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R



Parallel Scaling

Conclusions

Conclusions

C. Heuer, D. Hinrichs, G. Thaller Parallel Computing in R August 27, 2014 16 / 17

Conclusions

Conclusions

- Shared Memory multithreading can decrease computation time significantly
- Bridges the gap between single threaded applications and heavily parallelized standalone programs for HPC Clusters
- We can make use of the computational power present in workstation PCs \rightarrow $\it Everyday$ $\it Multithreading$

Parallel Computing in R

Conclusions

Conclusions

- Shared Memory multithreading can decrease computation time significantly
- Bridges the gap between single threaded applications and heavily parallelized standalone programs for HPC Clusters
- We can make use of the computational power present in workstation $\mathsf{PCs} \to \textit{Everyday}$ Multithreading
- But: Size of solvable problem is limited by available memory
- With 1 TB of memory, the package could fit a BRR model with 3 million observations and 40k markers

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R

Thank you for the attention

Parallel Computing in R

August 27, 2014 17 / 17

Github https://github.com/cheuerde/cpgen
R-Forge https://r-forge.r-project.org/R/?group_id=1687

C. Heuer, D. Hinrichs, G. Thaller

Absolute Timings

10 Cores, 30,000 markers

 $\bullet\,$ BRR: 1 million observations, 30k iterations \sim 100 hours

- $\bullet\,$ GWAS: 10k observations \sim 7 minutes
- $\bullet\,$ G-Matrix: 10k observations \sim 2 minutes

C. Heuer, D. Hinrichs, G. Thaller

Parallel Computing in R