Faculty of Health and Medical Sciences

Prediction of genomic breeding values for feed efficiency and related traits in pigs

D.N Do¹, L.L.G.Janss², A.B Strathe^{1, 3}, J.Jensen² and H.N Kadarmideen¹

- ^{1:}Animal Breeding, Quantitative genetics and Systems Biology Group (AQS),*IKVH-SUND*, University of Copenhagen, Denmark
 ²: Danish Agriculture & Food Council, Pig Research Centre
 ³: Department of Molecular Biology and Genetics, Aarhus University, Department of Molecular Biology and Biology a
 - Denmark

Overview

- > Introduction
 - Feed efficiency and Residual feed intake
 - Objectives of this study
- > Methods
 - Genomic prediction using GBLUP and Bayesian approaches
 - Partitioning of genomic variance based on genomic annotation
- Results, Conclusion and Future perspectives

Feed efficiency and Residual feed intake (RFI)

- > Feed efficiency is a complex trait with large economic impact
- Measured by food conversion ratio, RFI or residual and gain
- \blacktriangleright RFI = observed feed intake (DFI) expected DFI
- The expected DFI predicted from production (Daily gain) and maintenance requirements (Backfat/middle metabolic weight)
- \succ RFI = net feed efficiency

UNIVERSITY OF COPENHAGEN

Benefit of selection for low RFI pigs

reduce feed consumption or feed cost

no change in Daily Gain & Back fat

less impact on environment

improve meat quality

UNIVERSITY OF COPENHAGEN

 \succ

->

« Previous | Next Artic Table of Contents

Published online before prin July 3, 2013, doi: 10.2527/jas.2012–6197

J ANIM SCI September 2013 vol. 91 no. 9 4069-4079

This Article

Residual feed intake (RFI) in Danish Duroc pigs

- > Moderately heritable ($h^2 = 0.38$)
 - Traits in boars of three pig breeds' D. N. DO^{*,2}, A. B. Strathe*, J. Jensent, T. Mark* and H. N. Kadarmideen*-Favorable genetic correlations with (DFI) (0.88) and FCR (0.87)
- ➢ 3 QTLs for RFI explain very little

genomic variance \rightarrow No Maker assisted selection

Journal of Animal Science

Genetic parameters for different measures of feed efficiency and related

HOME CONTACT US HELP ARCHIVES PAPERS IN PRESS ASSOCIATION NEWS MEETING ABSTRACTS ANIMAL FRONTIERS ASAS HOMI

RFI2

Objective 1: To compare prediction performance (accuracy, bias)

of different genomic prediction methods (GBLUP and Bayes)

Genomic annotation

Genomic annotation /genomic regions

influenced predictive ability for production

traits (Morota et al, 2014, BMC genomics)

Objective 2: To investigate the influence of genomic annotation on

genomic contribution and prediction accuracy

Population

Genomic annotation (60K) using Variant Effect Prediction

Accuracy of genomic predition

Method	DFI	<u>RFI</u>
GBLUP	0.517	0.517
BL	0.515	0.509
Bayes A	0.528	0.535
Bayes B	0.508	0.519
Bayes Cn	0.531	0.532

- > Accuracy of genomic prediction ~ 0.51- 0.53 for both traits
- > Accuracy was not significantly differed compared to GBLUP (p < 0.05)
- > Prediction was biased (1.1 1.4)

Genomic variance partitioning

Genomic region	SNP	DFI		RFI	
		Var.exp	Var.exp	Var.exp	Var.exp
		(%)	per SNP	(%)	per SNP
Downstream	1110	3.82	3.45E-05	3.68	3.31E-05
Upstream	1,211	4.09	3.38E-05	3.89	3.21E-05
Genic	8,084	27.28	3.37E-05	28.31	3.50E-05
Intergenic	18,974	61.99	3.27E-05	61.4	3.24E-05

- Variance contribution (%) was linearly associated with number of SNPs
- > Variance explained per SNP was as similar as a **expected** value (1/30234 = 3.31E-05)

Prediction accuracy of genomic regions

Genomic region		DFI			
	Acc	Mean.Acc Random ¹	Acc	Mean.Acc Random ¹	
Downstream	0.231	0.378	0.290	0.384	
Upstream	0.455	0.385	0.425	0.391	
Genic	0.511	0.458	0.493	0.483	
Intergenic	0.471	0.500	0.477	0.498	

➤ Genic region and upstream regions improved prediction accuracy,

but not significant (p < 0.05)

Discussion

Similar accuracy among the prediction methods

- ✓ Highly Polygenic trait no major genes or QTLs (Do et al, 2014, BMC Genetics)
- ✓ Pig 60K SNP chip does not contain SNPs of many important genes in feed efficiency/intake: MC4R, LEPTIN, CCK8...

Little impact of genome annotation on prediction accuracy

- ✓ High LD in Durocs (Wang et al, 2013, BMC Genetics)
- ✓ Poor annotation (12% SNP not annotated)
- \checkmark SNP chip design ignores rare variants

Conclusion and future perspective

- \checkmark Choice of prediction method
- ✓ Genomic regions

"**Little**" impact on predictive ability of RFI and DFI

- ✓ Accuracy prediction ~ 0.5 → could GEBVs replace for feed intake measurement?
- Ongoing: Examine sources of prediction bias
 Include QTLs, candidate genes and biological pathways in prediction
 model

Acknowledgements

• Danish Pig Research Center

• Faculty of Health and Medical Science, University of Copenhagen

THANK YOU

Define significant threshold for group annotation

- Random sample 1000 time number of SNPs same to each annotated class
- Computed the EBVs of animals using each of 1000 goups
- Compute accuracy for each group on test pop
- Compute 95% quantile
- Draw conclusion based on compare accuracy of class to 95% quantile from random group

Class	60K	QC
3_prime_UTR	282	154
5_prime_UTR	58	36
downstream_gene	2095	1110
intergenic	34979	18974
intron	13662	7347
intron,nc_transcript	144	51
intron,NMD_transcript	53	28
missense	219	109
<pre>missense,splice_region</pre>	6	2
non_coding_exon,nc_transcript	32	10
splice_donor	2	1
splice_region,intron	54	32
<pre>splice_region,synonymous</pre>	17	12
stop_gained	4	2
stop_lost	1	1
synonymous	518	305
upstream_gene	2226	1211
Not Annotated	7807	847