

The design of mega dairies in India: optimal facility allocation, and how big do you want to go?

Ilan Halachmi ARO, The Volcani Centre, Bet Dagan. Israel

EAAP 2014 Copenhagen Denmark

Please ask during the presentation

So long losers!
I'm off to India to live like a Goddess...

A mega dairy in India – in brief

Design & management of a large-scale dairy farm require OR tools.

- In this study a combined model:
 - queuing-network, robust 6σ design,
 - simulation and optimization

was developed

Agricultural Research Organization (ARO) Israel

- Design criteria were:
 - 10,000 cows in milking,
 - intensive farming while maximized animal welfare,
 - year-round indoors, no grazing, open-large cowsheds, dry manure bedding, no cubicle housing, maximizing cow resting time and worker convenience.
 All design criteria were met.
- We modeled eight farming aspects:
 - * cow traffic,
 - * vet treatment,
 - * cow cooling,
 - * workers' transportation

- * milking parlors,
- * manure handling,
- * feed-center operation,
- * a problematic junction, and their interrelations.

Project Aim – to design a mega dairy

- 10,000 cows in milking
- Three rotary milking parlors
- Two veterinary hospitals
- One animal-feed center
- Cow-manure handling& biogas production
- Cow cooling centers
- Calves, heifers, replacement
- Workers' traffic and facilities

A mega dairy subsystems **Agricultural Research** Milking X3/day Cooling x6/day **Organization (ARO) Israel** Manufacture of Loaders Sylventer of Loaders Mixing Wagons Workers bus, 3 shirt day 36 cowsheds

Figure 1. The mega dairy's five traffic circles

Design tool 1.

Robust 6σ design

The under-study farm milks 290*12*3*365*3 = 11,431,800 milkings per a year.

standard deviation	Percent variation (%)	Missed milkings per year (no sigma shift)	Missed milkings per year (1.5σ shift)
±1σ	68.26	3628453	7975966
±3σ	99.73	<u>30865</u>	<u>763678</u>
±4σ	99.99	720	70877
±5σ	99.9999	6.5	2664
±6σ	99.99999	0.02	<u>39</u>

Design tool 2. closed queuing network

Figure 6. The flow of the cows throughout the treatments at the parlor's pens

Design tool 3. Simulation model

Design tool 4. Optimization

A deterministic design problem:

A probabilistic design problem:

Minimizes: $F(\mu_v(X))$

subject to: $gi(\mu_v(X)) \le 0$

 $X_L \le \mu_X \le X_U$.

Minimizes: $F(\mu_v(X), \sigma_v(X))$

subject to: $gi(\mu_v(X), \sigma_v(X)) \le 0$

 $X_L + n\sigma X \le \mu X \le X_U - n\sigma X$

 $\mu_y - n\sigma_y \ge Lower specification limit$ $\mu_y + n\sigma_y \le Upper specification limit$ $\mathbf{n=6}$

The complexity

- several facilities making up a large farm
- mutual interaction
- numerous animal-related parameters
- number of multidisciplinary fields,

- Regular design each facility separately
- Static design (Excel) and simulation
- no proof of optimum solution
- animal friendly
- environment friendly
- convenient for humans
- economically feasible
- Social aspects local community
- sustainability

Design all components as one single system

Simulation & Optimization

A mega dairy subsystems = 7 models

Seven simulation models were built

- Milking parlor cow flow (model 1)
- In-parlor treatment cow flow (model 2)
- Cow traffic to the milking parlor and cooling sheds (model 3)
- Junction flow near the milking parlor (model 4)
- Manure scraping (flow?) (model 5)
- Feed-distribution flow (model 6)
- Worker traffic flow (model 7)

A model of mega dairy as a one single system

- Optimization maximizing capacity of each facility
- Queuing network links all the facilities into one single system
- Reliability Quality over Time
- Robust (6 sigma) design

A mega dairy in India - results

Farming area 1. Milking parlor

Based on the model, the decision were:

- 80-stalls rotary parlor
- Rotary speed 7.5 sec / cow

A mega dairy in India - results Farming area 2. Cow treatment

Based on the model, the decision were:

- 102 stalls for fast treatments in the parlor after milking: fertility, hooves, lameness, drying
- Other treatments send the cow to the hospital

"Momny wants you to know where your food comes from."

just made it worse."

A mega dairy in India - results

Farming area 3. Cow traffic

Based on the model, the decision were:

- the walking time to and from the parlor should not exceed 20 min
- Otherwise the natural lying time is suppressed
- Cow's Time-Budget
- Walking distance and lane width were design

The influence of walking time on the availability of lie downtime during one 8-h shift with milking

A mega dairy in India - results

Farming area 3. Cow traffic

Agricultural Research Organization (ARO) Israel

Cow traffic simulation program objects and user interface; the influence of walking time on the availability of cow reclining time

A mega dairy in India - results Farming area 3. The Junction

A mega dairy in India - results Farming area 3. The Junction

Model suggests:

- Junction crossing time
- 10 min. or less from the parlor
- 5 min. or less from the cooling shed.
- Otherwise the successive group is being delayed
- Consequently, a 80m buffer was designed and the

junction was relocated accordingly

A mega dairy in India - results Farming area 5. Manure scraping

Agricultural Research Organization (ARO) Israel

Model suggests:

- two tractor shovels are sufficient for the entire farm.
- (before the model- four shovels)
- Tractor utilization is rather high, 0.92–0.95
- The 36 cowsheds can be cleaned within 1 shift
- (before the model two shifts)

Manure-scraping simulation program objects and user interface

A mega dairy in India - results

Farming area 6. Cow-feed Agricultural Research Organization (ARO) Israel processing and distribution center

Model suggests:

- Two mixers and two wagons are required to finish 42 rounds within 16.25 h per day (two 8-h shifts).
- (before the model three shifts, four wagon and three mixers)

A mega dairy in India - results Farming area 7. Labor traffic

Model suggests:

- one single bus carrying 50 passengers seems to be sufficient.
- The bus utilization was 0.28.
- Average transfer time for a worker was 0.34 h each way.
- (before the model three busses)

Labor traffic simulation program objects and user interface: layout view

Figure 7. Validation – queuing vs. regression models.

Conclusions (1)

Innovative aspects: Systems engineering

(statistic CAD drawing, Excel each components senarately)

failed to handle the mutua Design all components A design concept for a megaas one single system

- The model incorporates:
 - cow traffic,
 - milking parlors,
 - vet treatment,
 - manure handling,
 - cow cooling,
 - feed-center operation,
 - workers' transportation

- Aiming at: Simulation &
- animal fr **Optimization**
- convenient for humans
- economically feasible
- Social aspects local community
- sustainability
- A problematic junction, and their interrelations

Conclusions (2)

The model found bottle-necks

- Agricultural Research Organization (ARO) Israel
- The model maximized production capacity in terms of cows throughput in the milking parlor
- The simulation suggested "optimal solution".
- The model recommendations were discussed with and were accepted by the farm managers and designers.
- In further research other aspects should be incorporate:
 - Local community interaction: social issues, animal care tradition
 - Environment
 - Branding and social networks

Open questions

How does a mega-dairy influence the local rural community ?:

- Roads and water infrastructure
- Land price, and local feed supply and price
- Local tradition concerning animal care
- Odour smell, water contamination,
- Social are the workers are locals?
- Branding and social networks ?
- •How big do you want to go?
- Environment, Sustainability?
 Book copy, to contribute a chapter halachmi@volcani.agri.gov.il
 Ilan Halachmi

