Seasonal variation in semen quality of Dorper rams, using different collection techniques

CM Malejane, JPC Greyling, MB Raito & AM Jooste Department of Animal, Wildlife and Grassland Sciences University of the Free State, Bloemfontein, South Africa

Introduction

- Sheep seasonal (spermatogenesis)
 time of collection important
- Dorper breed internationally renowned (hardy, carcass)
- Disseminating genetic material (cryopreservation of semen; AI)
- Quality semen crucial preferred season
- Technique of semen collection important (artificial vagina vs electro-ejaculator)

Material and Methods

- 11 Mature Dorper rams (69.9 ± 9.2kg; 18 ± 4.7 months) individually housed
- Observation period of 12 months (summer, autumn, winter, spring)
- Semen collected and evaluated weekly
- Artificial vagina (n=6) vs Electroejaculator (n=5)

Material and Methods

- Parameters assessed for semen quality
 - i. Ejaculate volume (ml)
 - ii. Colour of ejaculate density and contamination
 - iii. Semen pH
 - iv. Microscopic semen wave motion (x10 magnification) score 0 to 5
 - v. Sperm motility (x40 magnification) percentage
 - vi. Sperm concentration (haemocytometer 1:100 dilution)
 - vii. Sperm viability (% live sperm eosin-nigrosin stain)

 Statistically analysed using the one-way analysis of variance (ANOVA)

Table1 Mean ambient temperature, relative humidity and daylight length for the observation period

	Ambient temperature (°C)		Relative humidity (%)			Daylight length (h)			
Season	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean
Summer	8.4	36.4	24.5	5.9	93.2	54.0	12.4	14.0	13.4
Autumn	-1.8	32.9	17.2	8.8	92.6	47.6	10.2	12.4	11.2
Winter	-3.6	29.2	10.9	7.1	94.0	47.1	10.1	11.3	10.5
Spring	1.7	34.1	18.6	5.3	90.5	36.5	11.3	13.5	12.6

Table 2 Mean (±S.D.) macroscopic seasonal variation in semen volume, colour and pH, following the use of the artificial vagina and electro-ejaculator semen collection techniques in rams for the entire observation period

Semen parameters	Season	Artificial vagina	Electro-ejaculator	
Semen volume (mL)	Summer	×1.1 ± 0.2 ^a	$^{y}1.0 \pm 0.4^{b}$	
	Autumn	×1.1 ± 0.3 ^a	^z 0.7 ± 0.4 ^b	
	Winter	×1.1 ± 0.3 ^a	×1.2 ± 0.6 ^a	
	Spring	×1.1 ± 0.3 ^a	×1.3 ± 0.4 ^b	
Semen colour (0-5)	Summer	$^{y}3.6 \pm 0.3^{a}$	^x 2.8 ± 0.7 ^b	
	Autumn	×3.9 ± 0.4 ^a	×2.5 ± 0.8 ^b	
	Winter	^z 2.8. ± 0.4 ^a	^y 1.9 ± 0.6 ^b	
	Spring	^y 3.6 ± 0 3 ^a	^x 2.6 ± 1.0 ^b	
Semen pH	Summer	×6.8 ± 0.1 ^a	×6.8 ± 0.1 ^a	
	Autumn	×6.8 ± 0.1 ^a	×6.9 ± 0.2 ^a	
	Winter	$^{x}6.8 \pm 0.3^{a}$	$^{x}6.8 \pm 0.3^{a}$	
	Spring	×6.7 ± 0.2 ^a	×6.7 ± 0.2 ^a	

^{a,b} Means in the same row with different superscripts differ significantly (P<0.05).

x,y,z Means in a column with different superscripts differ significantly (P<0.05).

Table 3 Mean (±S.D.) microscopic seasonal sperm characteristics for the artificial vagina and electroejaculator semen collection techniques in Dorper rams

Semen parameters	Season	Artificial vagina	Electro-ejaculator	
Sperm motility (%)	Summer	^x 76.7 ± 5.3 ^a	$^{x}68.8 \pm 8.0^{b}$	
	Autumn	×76.7 ± 8.14 ^a	^x 65.8 ± 10.2 ^b	
	Winter	^y 52.2 ± 15.3 ^a	^y 32.6 ± 15.8 ^b	
	Spring	×77.8 ± 5.2 ^a	^x 63.3 ± 18.5 ^b	
Sperm wave motion (0-5)	Summer	$^{y}3.5 \pm 0.3^{a}$	$^{x}2.8 \pm 0.7^{b}$	
	Autumn	×3.9 ± 0.3 ^a	×2.5 ± 1.0 ^b	
	Winter	$^{z}2.7 \pm 0.7^{a}$	^y 1.9 ± 0.6 ^b	
	Spring	×3.7 ± 0.4 ^a	×2.7 ± 1.7 ^b	
Sperm abnormalities (%)	Summer	^y 7.1 ± 2.4 ^a	$^{y}6.2 \pm 2.6^{a}$	
	Autumn	^z 5.3 ± 4.0 ^a	$^{z}4.2 \pm 3.0^{a}$	
	Winter	×9.0 ± 2.4 ^a	×8.5 ± 2.9 ^a	
	Spring	^z 4.4 ± 1.9 ^a	^z 4.6 ± 2.8 ^a	
Sperm viability (%)	Summer	^y 78.5 ± 4.5 ^a	$^{Y}74.3 \pm 6.9^{b}$	
	Autumn	^x 84.2 ± 9.1 ^a	^x 82.2 ± 10.6 ^a	
	Winter	^z 48.0 ± 17.3 ^a	^z 39.0 ± 14.6 ^b	
	Spring	^x 81.3 ± 5.3 ^a	^y 72.8 ± 16.3 ^b	

a,b Means in the same row with different superscripts differ significantly (P < 0.05).

x,y,z Means in a column with different superscripts differ significantly (P < 0.05).

Figure 1 Mean monthly sperm concentration (x10⁶ sperm/mL) recorded in Dorper rams, using the artificial vagina (AV) or electro-ejaculator (EE) semen collection techniques for a 12-month period.

- The electro-ejaculation technique was more variable and less repeatable
- The electro-ejaculation technique produced less dense sample (colour)
- Ejaculate less dense in winter for both collection techniques. Similarly for sperm wave motion
- No difference in semen pH between artificial vagina and electro-ejaculation – AV more acceptable technique
- Sperm abnormalities tended to be higher in winter for both collection techniques

Conclusions

- Both techniques of semen collection yielded semen from Dorper rams throughout the year
- Artificial vagina generally yielded better quality semen – more acceptable method of semen collection
- Semen of better quality recorded during summer autumn and spring. Winter is a limiting factor to semen quality in the Dorper
- Dorper less seasonal in terms of spermatogenesis compared to other breeds
- High quality semen (concentration, sperm motility, percentage live sperm) crucial for Al and semen cryopreservation

THANK YOU!!

