

Effects of dietary nitrate and lipid on methane emissions from beef cattle are basal diet dependant

John Rooke, Carol-Anne Duthie, Shane Troy, Jimmy Hyslop, Dave Ross, Tony Waterhouse and Rainer Roehe *SRUC, Edinburgh, UK* John Wallace *Rowett Institute of Nutrition and Health, University of Aberdeen, UK*

Leading the way in Agriculture and Rural Research, Education and Consulting

Study part of larger project

NUTRI-BEEF

"Nutritional improvements using diets and novel feed additives to enhance <u>overall efficiency</u> of beef production including <u>meat quality</u> and <u>mitigation of</u> <u>greenhouse gas emissions</u> as identified by characterisation of the <u>rumen microbial population</u>"

GHG from livestock

From: Lesschen 2012

Feed additives

Impact of feed additives on methane mitigation, feed efficiency and overall performance

To investigate

- Short and long-term effect of feed additives
- Interactions between feed additives and diets

Feed additives - criteria

- Sourced competitively generic not proprietary
- Cost-effective
- Evidence for efficacy

Feed additive - nitrate

<u>Reduction of enteric emissions</u>

- $NO_3^- \rightarrow NO_2^- \rightarrow NH_4^+$
- Alternative hydrogen sink / electron acceptor to methane
- Thermodynamically more favourable
- Used successfully in previous experiments
- Can be sourced from different suppliers
- Issue of nitrite toxicity

Feed components based on lipids

- Reduction in enteric methane emissions
 - Non-fermentable feed component
 - Inhibition of protozoa
 - Biohydrogenation of unsaturated fatty acids
- Many different potential feeds for cattle
- Can be sourced from different suppliers
- Rapeseed oil in form of cold-pressed rapeseed cake used as UK produced.

2 x 2 x 3 Factorial Design Experiment

	Diet type					
	Concentrate		Forage			
	Control	Nitrate	Rapeseed	Control	Nitrate	Rapeseed
Charolais x	7	7	7	7	7	7
Luing	7	7	7	7	7	7

•2 diet types

- Concentrate-straw (920:80 g/kg DM)
- Forage-concentrate (500:500 g/kg DM)

•3 treatment groups per diet type

- Control
- Nitrate
- Rapeseed cake

•2 breed types

- Charolais x
- Luing

Diet formulation

	Forage based diet (g/kg DM)			
	Control	Rapeseed Cake	Nitrate	
Wholecrop Barley Silage	331	334	334	
Grass Silage	189	192	193	
Barley	328	287	374	
Rapeseed Meal	123	16	45	
Molasses	19	20	21	
Minerals	9	9	10	
Rapeseed Cake		142		
Calcinit			24	

	Concentrate based diet (g/kg DM)			
	Control	Democrand Colice	Niturato	
	Control	Rapeseed Cake	Nitrate	
Barley	740	700	797	
Rapeseed Meal	145	21	64	
Barley Straw	84	83	84	
Molasses	21	21	21	
Minerals	10	10	9	
Rapeseed Cake		166		
Calcinit			25	

Time line of the experiment

Experimental procedure

Feed and productive efficiency

Chamber based measurements

Carcass and meat quality based measurements

- 13 week period
- 6 respiration chambers
- Batches of 6 animals per week
- Animals acclimatised in training pens for 7 days premeasurement
- Methane measured over 48 h
 period
- Ad libitum feeding

Experimental records

Feed and productive efficiency

Chamber based measurements

- Methane
- Hydrogen
- VFA in rumen fluid
- Feed intake
- Live-weight

Carcass and meat quality based measurements

Methane emissions -g/day

CH₄ from Concentrate less than Forage (P<0.001)

SRUC

CH₄ from Nitrate overall less than Control (P<0.05)

No significant effect of rapeseed cake

No differences between breeds

Methane emissions – g/kg DM intake

SRUC

Emissions from concentrate less than forage (P<0.001)

Significant reduction in CH_4 by nitrate on forage diet (P<0.05); no effect on Concentrate diet

No overall effect of rapeseed cake; nonsignificant reduction on forage diet

No effect of breed

Summary – forage diet

Nitrate

- Methane emissions reduced by 17%
- 80% of maximum possible from stoichiometry
- In agreement with other studies

Rapeseed cake

- Methane reduced by 7.5%
- Equivalent to 3.3% reduction per 10 g/kg increase in dietary lipid
- Similar to average reduction (3.8%; Martin et al. 2010) across studies

Summary – concentrate diet

Nitrate No reduction in methane outputs

	Forage	Concentrate
CH ₄ reduction	17%	None
H ₂ increase	2.6 x	2.0 x
Acetate:propionate	$Con \ 3.1 \rightarrow NO_3 \ 4.0$	$Con \ 1.6 \rightarrow NO_3 \ 2.4$

But other measurements change in similar fashion in response to nitrate in both diets.

Summary – concentrate diet

Nitrate No reduction in methane outputs

Possible reasons

Nitrate is not reduced but absorbed

Nitrat metha	Plasma nitrate	e (µM)	mot result in
	Control	5	
Nitrat	Forage – nitrate	56	umen
from	Concentrate – nitrate	182	generated

Conclusion

Reductions in methane output from cattle fed nitrate and rapeseed cake are basal diet dependant

Acknowledgments

- Thanks to all SRUC staff who contributed to study
- To collaborators

S Rowett Institute of Nutrition and Health

To funders

