

Sustainability of the chicken supply chain in Lebanon: An evaluation system

Rodrigue EL BALAA and Christine TANNOURY

Email: rodrigue.elbalaa@balamand.edu.lb

Status of Lebanese chicken industry

- Enough production to satisfy private consumption and export frozen product around the Middle East
- 200 farms for table eggs and 1000 farms for broilers, producing seven million eggs and 180 million broilers per year respectively (Freiji, 2008)

Difficulties

1. Introduction

- High production cost
- Volatile feed cost
- High solid waste, water depletion, GHG production (IFC, 2007)

Proposed approach

1. Introduction

- A multifaceted problem requires a multidisciplinary approach
- Horizontally (environmental, economic and social), sustainability
- Vertically to include the supply chain actors (farmers, processors and distributors) supply chain

Objectives

- Setting up an evaluation system of the sustainability of the chicken production supply chain
- Validation through testing

Step 5

Building the evaluation system: a Life Cycle Analysis Approach

Defining the study objective and borders

• Performing input and output inventory

• Identifying and calculating sustainability indicators

Validating the system through sample testing

• Transforming indicators results into scores

Building the evaluation system: a Life Cycle Analysis Approach

 Defining the study objective and borders Step 1 Performing input and output inventory Step 2 • Identifying and calculating sustainability indicators Step 3 Validating the system through sample testing Step 4 • Transforming indicators results into scores Step 5

Step 1

1. Introduction

• Defining the study objective and borders

Supply chain actors:

- Producers
- Processors
- Distributors

Functional Unit (Kg of edible meat)

Building the evaluation system: a Life Cycle Analysis Approach

• Performing input and output inventory

Level	Input	Output		
Production	 Feed Water Energy Medicine Bedding Equipment Water 	 Air emissions Wastewater Manure fallen stock Waste Birds 		
Processing	 Energy Chemicals Raw material (birds) Equipment 	Air emissionsWastewaterAnimal productsSolid waste		
Distribution	WaterEnergyChemicalsEquipment	Air emissionsWastewaterSolid waste		

Building the evaluation system: a Life Cycle Analysis Approach

 Defining the study objective and borders Step 1 Performing input and output inventory Step 2 • Identifying and calculating sustainability indicators Step 3 Validating the system through sample testing Step 4 • Transforming indicators results into scores Step 5

Step 3

1. Introduction

Identifying and calculating sustainability indicators

	Variables	NA in - I Init	Supply Chain level				
	Variables	Measuring Unit	Production	Processing	Distribution		
Environmental	1) Energy	MJ/ kg	- Electricity - Transportation	- Electricity - Transportation	Electricity		
	2) GHG emission	g CO₂/kg	- Electricity- Animal activity- Transportation- Boilers		Electricity		
	3) Nitrogenous effluents	L/kg	Animal drinkingCleaningCooling	- Cleaning - Cooling - Cooking	NA		
	4) Water consumption	g/ kg	- Manure - Dead birds	- Wastewatertreatment- Offal and viscera	NA		
	5) Packaging material	g/kg	- Feed packs	- Cartons and nylon	Nylon bags		
	6) Equity	% of women	Applied at all levels				
	7) Salary	LBP / year	Applied at all levels				
_	8) Employees turn-over or rotation rate	Average of working years	Applied at all levels				
Social	9) Training	Number of trainings per year					
	10) Age	Mean age of workers					
	11) Working environment security	% of injuries		Applied at all levels			
ပ	12) Productivity	Kg/HWU		Applied at all levels			
Economic	13) Profit growth	%		Applied at all levels	10		
ouc	14) Yearly investment	%	Applied at all levels				
Ë	15) Added value	%		Applied at all levels			

Building the evaluation system: a Life Cycle Analysis Approach

 Defining the study objective and borders Step 1 Performing input and output inventory Step 2 • Identifying and calculating sustainability indicators Step 3 Validating the system through sample testing Step 4 • Transforming indicators results into scores Step 5

Validating the system through sample testing

Questionnaire (40 questions), four sections:

- **1. General information** (name, the date of opening, the number of employees, etc.)
- **2. Environmental issues** (energy consumption for production and transportation, water consumption, chemical detergents, organic effluents etc.
- **3. Social conditions** (salary for blue and white collars, rotation rate, average age of workers, etc.
- **4. Economical data** (productivity, added value, profit growth, internal investment, etc.)

Sample interviewees

- Two major producers with large market segments
- two processors
- five distributors.

Building the evaluation system: a Life Cycle Analysis Approach

Transforming indicators results into scores

Score ranging between 0 and 10

	Indicator	Acronyms	0	1	2	3	4	5	6	7	8	9	10
Environmental	Energy (MJ/Kg)	ENV-ENG	x≥ 250	250>x≥220	220>x≥200	200>x≥150	150>x≥100	100>x≥80	80>x≥60	60>x≥20	20>x≥10	10>x≥5	5>x
	Green House Gases (g/kg)	ENV-GHG	x≥ 290	290>x≥260	260>x≥200	200>x≥100	100>x≥50	50>x≥25	25>x≥20	20>x≥15	15>x≥10	10>x≥5	5>x
	Effluents (g/Kg)	ENV-N	x≥ 30	30>x≥25	25>x≥20	20>x≥10	10>x≥5	5>x≥2.5	2.5>x≥2	2>x≥1.5	1.5>x≥1	1>x≥0.5	0.5>x
	Water (L/Kg)	ENV-WAT	x≥ 20	20>x≥15	15>x≥10	10>x≥8	8>x≥6	6>x≥4	4>x≥2	2>x≥1.5	1.5>x≥1	1>x≥0.5	0.5>x
	Packaging (kg/kg)	ENV-PACK	x≥ 5	5>x≥4.5	4.5>x≥4	4>x≥3.5	3.5>x≥3	3>x≥2.5	2.5>x≥2	2>x≥1.5	1.5>x≥1	1>x≥0.5	0.5>x
		SOC-EQU	0 ≤ x < 10	10 ≤ x < 15	15 ≤ x < 20	20 ≤ x < 25	25 ≤ x < 30	30 ≤ x < 32.5	32.5 ≤ x < 35	35 ≤ x < 37.5	37.5 ≤ x < 40	40≤ x <45	45≤ x <50
			100 ≥ x ≥ 90	90 > x ≥ 85	85 > x ≥ 80	80 > x ≥ 75	75 > x ≥70	67.5 > x ≥ 70	67.5 > x ≥ 65	65 > x ≥ 62.5	60 > x ≥ 62.5	60 > x ≥ 55	55 > x ≥ 50
	Janary (000	SOC-SAL	x<750	750≤x<950	950≤x<1050	1050≤x<1100	1100≤x<1150	1150≤x<1200	1200≤x<1500	1500≤x<1700	1700≤x<1750	1700≤x<1750	x≥1900
Social		SOC-SAL	x<950	950≤x<1050	1050≤x<1150	1150≤x<1200	1200≤x<1500	1500≤x<1700	1700≤x<1750	1700≤x<1750	1700≤x<1750	1900≤x<2000	x≥2000
	Rotation Rate (%) ≥5y	SOC-RR	<5%	5≤ x < 10	10 ≤ x < 20	20 ≤ x <30	30 ≤ x < 40	40 ≤ x < 50	50≤ x < 60	60 ≤ x < 70	70 ≤ x <80	80≤ x <90	x ≥ 90
	Age % 30< ≤40	SOC-AGE	<5%	5≤ x < 10	10 ≤ x < 20	20 ≤ x <30	30 ≤ x < 40	40 ≤ x < 50	50≤ x < 60	60 ≤ x < 70	70 ≤ x <80	80≤ x <90	x ≥ 90
	Training (days/year)	SOC-TRAIN	x<1	1≤x<3	3≤x<5	5≤x<8	8≤x<10	10≤x<12	12≤x<15	15≤x<18	18≤x<20	20≤x<25	x≥25
	Injuries	SOC-INJ	x≥ 100	100>x≥80	80>x≥60	60>x≥40	40>x≥20	20>x≥15	15>x≥10	10>x≥5	5>x≥3	3>x≥1	1>x
Economical	Productivity (T/WFU)	SOC-PROD	x<1	1≤x<10	10≤x<15	15≤x<20	20≤x<50	50≤x<500	500≤x<750	750≤x<2500	2500≤x<5000	5000≤x<10000	x≥10000
	Profit Growth (%)	SOC-PG	x<0.25	0.25≤x<0.5	0.5≤x<1	1≤x<3	3≤x<4.5	4.5≤x<6	6≤x<7.5	7.5≤x<9	9≤x<10.5	10.5≤x<15	x≥15
	Investment (%)	SOC-INV	x<0.25	0.5≤x<1	1≤x<1.5	1.5≤x<2	2≤x<2.5	2.5≤x<3	3≤x<3.5	3.5≤x<4	4≤x<4.5	4.5≤x<5	x≥5
Ш	Added Value	SOC-AV	x<200	200≤x<400	400≤x<600	600≤x<800	800≤x<1000	1000≤x<1500	1500≤x<2000	2000≤x<2500	2500≤x<3000	3000≤x<3500	x≥3500

Acceptability Benchmark

1. Unit sustainability performance scoring

2. Supply chain level group performance

3. Typology according to sustainability performances

The system was able to:

1. Introduction

- 1. Group supply chain actors into categories solely based on their sustainability performance
- 2. Quantify sustainability levels and provide scores
- 3. Offer a static description and a dynamic follow up of the supply chain's sustainability level
- 4. Offer a holistic approach and reveals the interaction between the different supply chain actors
- 5. Track sustainability weak sustainability scores to their origin

Use of the evaluation system

- Gathering and quantifying sustainability scores to help take agricultural policy decisions
- Transfer of results by specialised agricultural technicians to stakeholders in a simplified manner
- A fine balance between the accuracy of the information and the simplicity of its presentation

Perspectives

1. Introduction

- Test the system on a broader scale to allow fine tuning the scores calculations
- Test the adaptability of the system by testing it in different countries with different production systems and weather conditions
- Automating the calculation system through adapted computer programs

Questions?

