The effect of different dietary energy levels during rearing and midgestation on gilt performance

Signe Lovise Thingnes, Elin Hallenstvedt, Ellen Sandberg & Tore Framstad

lorwegian University of Life Sciences

Background

- Maternal breed: Norwegian Landrace x Yorkshire (LY)
- Genetic progress
- Feed efficient, lean and productive
- Old feed recommendations

Are present feeding recommendations still valid for the modern sow?

Introduction

- Is age and body composition at first mating important for sow productivity and longevity?
- Literature often describes five common strategies for rearing of gilts
- Our strategy: increase fat deposition without restricting the protein

Trial design

Materials & methods

- Data collection
 - Gilt age, weight and backfat thickness
 - Litter size and weight
 - Time of culling and reasons
- Statistical analysis
 - Repeated measures
 - Linear mixed models
 - Log-linear regression
 - Logistic regression

All results are based on field data collected in a commercial sow-pool

Main findings

	Norm energy diet	Higher energy diet		
Selection for mating	LS mean	LS mean		
Age, d	211ª	206 ^b		
Backfat, mm	11.3ª	12.4 ^b		

^{a-b} Between columns LS means with different lettering differ P < 0.05

Gilt development strategy								
Day 95 of gestation	HH	HN	NH	NN				
Age, d	324ª	330 ^B	330 ^B	336°				
Weight, kg	225ª	218 ^b	222 ^{ab}	220 ^B				
Backfat, mm	17.7ª	17.3 ^{ab}	17.4 ^{ab}	16.8 ^b				

^{a-b} Between columns LS means with different lettering differ P < 0.05^{A-B} Indicates statistical trend P – value between 0.05 - 0.10

Risk of removal at different ages and weight

Rearing strategy

Gilt development strategy

Culling reasons

	Rearing diet		Gilt development strategy			
	Norm energy	Higher energy	HH	HN	NH	NN
Reproduction						
*anestrus	1	0	1	8	5	4
*Return to estrus	1	0	0	1	1	1
*abortion	1	1	2	1	4	4
*Not in pig	4	3	1	7	4	3
Lameness & injuries						
*Lameness/foot lesions	6	3	1	2	0	0
*injuries	5	5	8	8	11	11
Other	4	5	1	3	4	5
Total	22	17	14	30	29	29

Main conclusions

- Gilts offered more dietary energy during rearing were younger and had more fat reserves at selection for mating
- Before parturition, the HH sows were the youngest, heaviest and had more backfat compared to the other three gilt development strategies
- Risk of removal tended to be lower among higher energy reared gilts
- More gilts from the HH group made the transition from first to second parity

Thank you for your attention!

Norwegian University of Life Sciences

