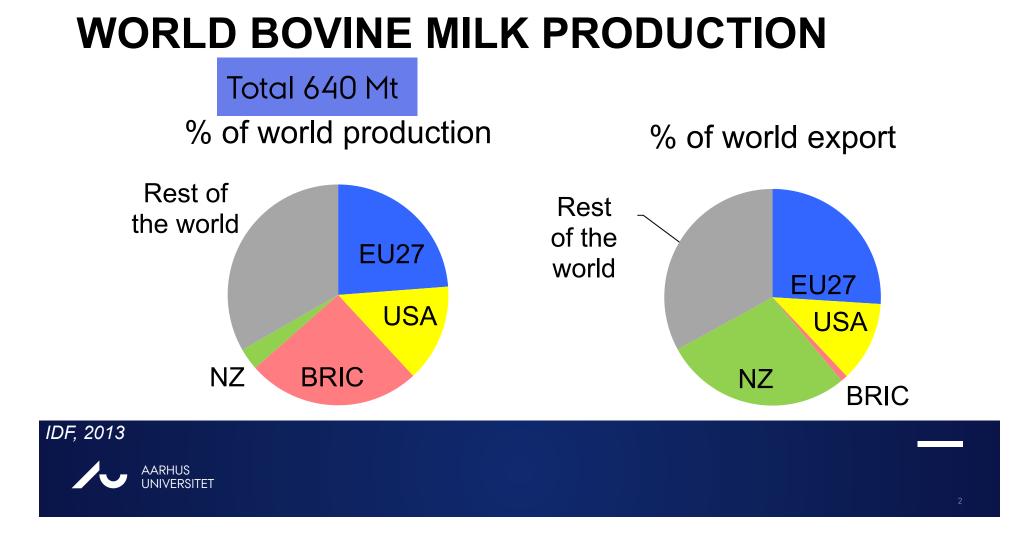
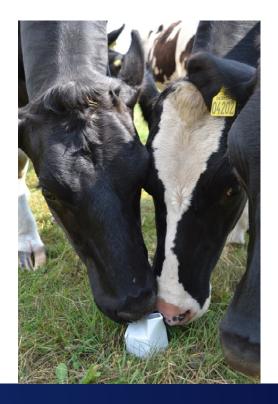


EFFECT OF FEED RATION ON MILK PRODUCTION, MILK QUALITY AND SUSTAINABILITY

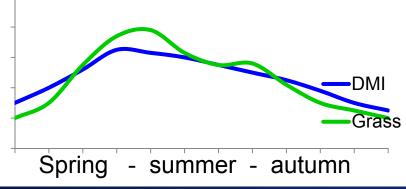

METTE KROGH LARSEN TROELS KRISTENSEN SØREN KROGH JENSEN MARLENE RANSBORG PEDERSEN GRITH MORTENSEN MARTIN RIIS WEISBJERG



OUTLINE OF PRESENTATION

Feed Composition Milk composition & Quality Milk production and sustainablity

Perspectives in development of new milk types



PRODUCTION SYSTEMS

Low intensity

High intensity

- Grazing natural grasslands
- Spring calving

Farming with nature, 2013

- TMR feeding
- Loose housing
- All year calving

FEEDING

Forages

- Pasture grass
- Conserved forage
- Grass, legumes, herbs
- Whole crop
- Beets

Concentrates

- Cereal grains
- By products
- Sugar
- **Oil**
- Biofuel
- Legume seeds

FEED NUTRIENT SUPPLY

- Forage Concentrate
- NDF
- Sugars
- Protein
- Starch
- Fatty Acids
- Vitamins & Antioxidants

- Starch
 Brotein
- Protein
- Fat

RUMINANT NUTRIENT SUPPLY

- Nutrients in feed
- Nutrients absorbed

- Carbohydrates
- Protein
- Fat

- VFA, microbial matter, glucose
- Microbial protein, rumen undegraded protein
- Hydrogenated FA (partly), microbial FA

FEEDING AND MILK GROSS COMPOSITION

	Protein %	Fat %
Increased energy intake	*	(1)
Increased conc./forage ratio		(↓)
Increased NDF	\downarrow	1
Increased sugar	(↑)	1
Increased protein	(↑)	
Undersupply EAA	\downarrow	\downarrow
Increased FA	\downarrow	$\uparrow \downarrow$

MILK IN HUMAN NUTRITION

Nutrient	% daily coverage by $\frac{1}{2}$ L 3.5% milk (female 31-60 years)	
Energy	15	
Protein	22	
Fat	23	
Vitamin A	22	
Vitamin D	5	
Vitamin B2	72	
Vitamin B12	113	
Calcium	73	
Magnesium	20	
Phosphorous	78	

Foodcomp.dk & NNR2012

VITAMINS IN MILK

Vitamin	Content in milk	Sources of variation
Vitamin A (µg/L)	300-500	B-carotene from grass etc
Vitamin D3 (ng/L)	60-270	Sun exposure, vit. suppl
Vitamin E (mg/L)	0.4-1.2	Grass etc, vit. suppl
Vitamin B2 (mg/L)	0.7-2.8	Ruminal synthesis, feed
Vitamin B12 (µg/L)	1-13	Ruminal synthesis

MINERALS IN MILK

Mineral	Content in milk	Sources of variation
Calcium (mg/kg)	1000-1300	Genetics, protein
Magnesium (mg/kg)	100-150	Genetics, protein
Phosphorous (mg/kg)	900-1000	Genetics, protein
lodine (µg/kg)	20-200	Feed, rapeseed ↓
Zinc (µg/kg)	700-5000	Feed
Selenium (µg/kg)	10-20	Feed

MILK FATTY ACIDS

Fatty acid	% of milk FA	Human relevance	Source
C4-C14	10-20	Positive, at least C4-C10	De novo
C16:0	22-45	Negative	Feed & De novo
C18:0	6-12	Neutral	Feed
MUFA	15-30	Positive	Feed + desaturase
PUFA	2-5	Positive	Feed
C18:3 n3	0.2-1.5	Positive	Grass; Linseed
CLA c9tr11	0.3-1.5	Positive	PUFA; Grass

DAIRY PRODUCTS

Product	Important properties				
Liquid fresh milk					
Fermented milk products	Flavour	Viscosity			
Cheese		Milk coagulation, texture			
	Colour				
Butter		Texture			
Milk powder					

Flavour includes oxidative stability

FLAVOUR OF MILK

Flavour characteristic	Source	Reason	Feed
Rancid	FFA	Mechanical /large fat globules/high milk fat	
Cardboard/ Metal	Oxidation	Imbalance pro/antioxidants and PUFA	High PUFA Low antioxidants
Barny	Skatole	Ruminal formation at high protein + high sugar in feed	Clover grazing
Cornflakes			Maize silage
Fresh flavour	Volatiles from	n feed transferred to milk	Aromatic feed (herbs)

DAIRY PRODUCTS AND FEED

Product	Property	Reason	Feed
Butter/cheese/ powder/cream	Yellow	High carotenoid	Grass feeding Jersey cows
Butter	Soft (spreadable)	High UFA	UFA from feed
Butter, Cheese	Firm	Low UFA	Low fat or high C16
Mature cheese	Textural properties	Differences in plasmin/ plasminogen activity	Botanical composition of grassland
Cheese	Late bloats	Anaerobic spores	Poor quality silage

SUSTAINABILITY

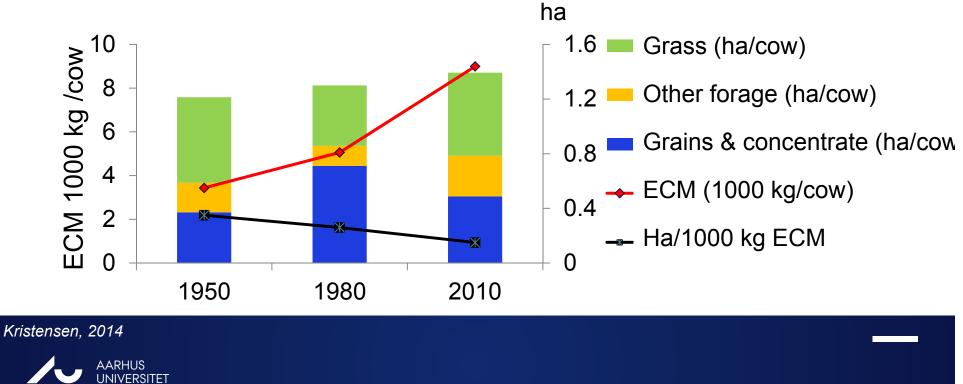
Biodiversity

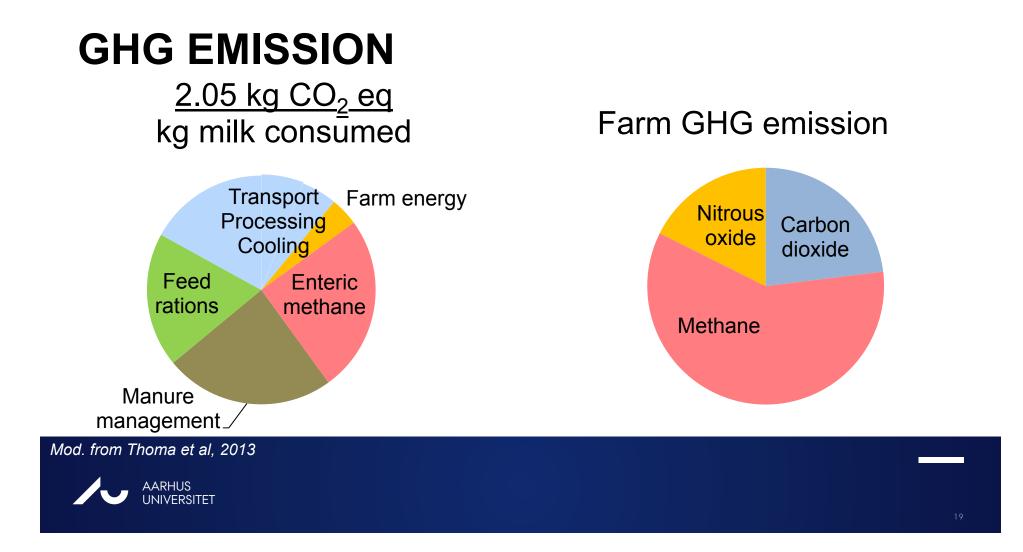
- Land use
- Nutrient use
- Climate impact

GHG emission

BIODIVERSITY

High biodiversity:


- Organic farming
- High proportion of grassland
- Grazing grass opposed to mowing



LAND USE

Development in Danish milk yield and land use

METHANE EMISSION

Methane production (/kg milk) can be reduced by:

- Increase concentrate to forage ratio
- Increase maize silage to grass silage ratio
- Include fat supplements
- ► CO₂ release from land use not included

High kg milk/kg DMI = High efficiency \rightarrow reduction in GHG/kg milk

PERSPECTIVES

Increase

- Feed efficiency
- Vitamins
- Cheese yield
- PUFA

- Decrease
- Feed costs
- Saturated fat
- Risk of off-flavour
- GHG emission
- Land use

SCENARIOS FOR FUTURE MILK TYPES

Reference TMR feeding:

- 60% forage: maize silage and grass silage in equal amounts
- 40% concentrate: cereal grains and oil seed meals

MAIZE MILK

Milk production based on >50% DMI from maize silage

Production Milk composition		Dairy proc	lucts	Sustainability			
Yield		Vitamins	\rightarrow	Butter	Pale	Land use	\downarrow
Fat%		SFA		Cheese	Pale	Biodiversity	\downarrow
Protein%	1	PUFA	\rightarrow	Milk powder		GHG	\downarrow
		Flavour	sweet	Yoghurt	viscous		

PASTURE MILK

Milk production based on >40% DMI from grazing high yielding clover grass

Production		oduction Milk composition Dairy products		ducts	Sustainability	/	
Yield	(↓)	Vitamins	1	Butter	Yellow soft	Land use	1
Fat%		SFA		Cheese	yellow	Biodiversity	1
Protein%		PUFA	1	Milk powder		GHG	
		Flavour	barn	Yoghurt			

BIODIVERSITY MILK

Milk production based on grazing natural grassland

Production		Milk composi	tion	Dairy products Sustainabili		Sustainability	/
Yield	$\downarrow\downarrow$	Vitamins	1	Butter	Yellow Soft	Land use	(↑)
Fat%		SFA	↓	Cheese	Yellow Texture	Biodiversity	1
Protein%	↓	PUFA	1	Milk powder		GHG	1
		Flavour		Yoghurt	Less viscous		

PROTEIN MILK

Production of milk with an increased protein%:

High concentrate, high starch, less fat

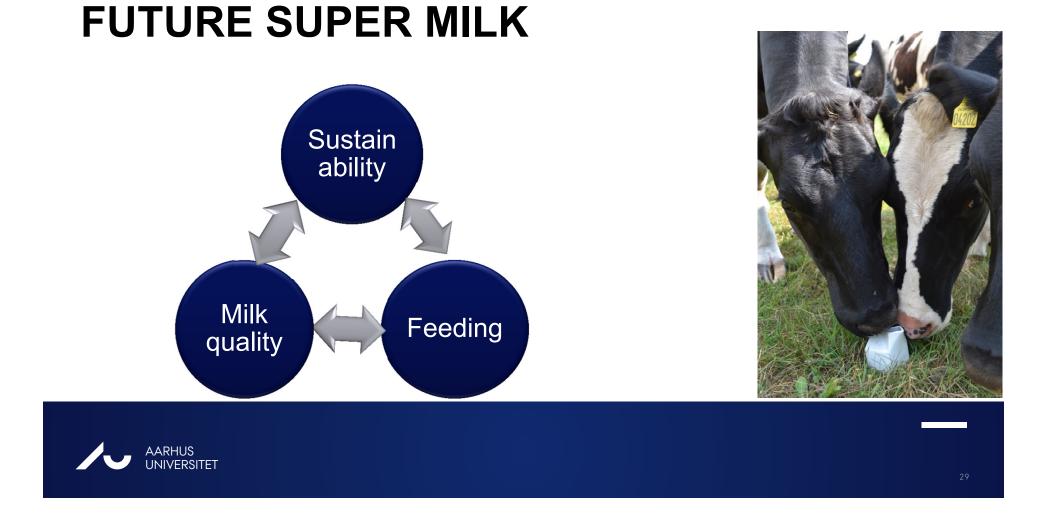
Production	า	Milk compositi	Dairy productsSustainabilityosition		Dairy products		y
Yield	1	Vitamins	\downarrow	Butter	firmer	Land use	1
Fat%		SFA	1	Cheese	1	Biodiversity	\downarrow
Protein%	1	PUFA	Ļ	Milk powder		GHG	\downarrow
		Flavour		Yoghurt	Viscous		

OMEGA 3 MILK

Elevated linolenic acid

Linseed supplement

Production	Milk compo	Milk composition		Dairy products		Sustainability	
Yield	Vitamins	\downarrow	Butter	soft	Land use		
Fat%	SFA transFA	\downarrow	Cheese		Biodiversity		
Protein%	PUFA	1	Milk powder		GHG		
	Flavour	oxid?	Yoghurt				



LOW CARBON FOOT PRINT MILK

High fat supplement, maize and grass clover silage, high concentrate

Production		Milk composition		Dairy products		Sustainability	
Yield	1	Vitamins		Butter		Land use	1
Fat%		SFA		Cheese		Biodiversity	\downarrow
Protein%		PUFA		Milk powder		GHG	\downarrow
		Flavour		Yoghurt			

