EAAP 2014 28/08 - Session 48

Affecting milk composition of Jersey cows in grass silage of different cuts with or without rapeseed

S. Vogdanou¹, M. R. Weisjberg², J. Dijkstra³, M. K. Larsen¹

¹Department of Food Science, Research Centre Foulum, Denmark

²Department of Animal Science, Research Centre Foulum, Denmark

³Animal Nutrition Group, Wageningen University, Wageningen, the Netherlands

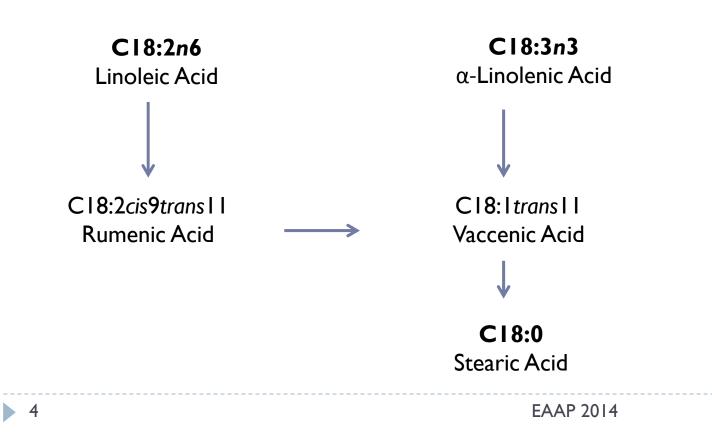
Agenda

- Background
 - Fatty acids, Antioxidants, Sources
- Aim Hypotheses
- Experimental work
- Results
- Discussion
 - Comparison with literature

Conclusions

Fatty acids in milk

More than 400 FA in milk


- Milk fat contains:
- ✓ ~60-75% SFA
 - Palmitic acid (CI6:0)
- 20-25% MUFA
 - Oleic acid (C18:1*cis*9)
- ✓ 0-5% PUFA
 - Linoleic (C18:2*n*6), α -linolenic acid (C18:3*n*3)

Replace SFA with cis-MUFA & PUFA

Lipid metabolism

- I. Hydrolysis
- 2. Biohydrogenation of unsaturated FA

Antioxidants

- Carotenoids:
- xanthophylls (lutein and zeaxanthin) not converted into vitamin A
- o carotenes precursors of vitamin A
- Tocopherols:
- \circ α -, β -, γ and δ -tocopherols: saturated vitamins
- Alpha-tocopherol \rightarrow highest antioxidant activity
- Antioxidants: delay oxidation of milk

Sources of FA and antioxidants

- I. Grass forages
- Source of UFA and n-3 PUFA, carotenoids and tocopherols
- Variations according to species, cultivars, conservation method, maturity or times of harvest

2. Oilseeds

- Increased caloric density of the ration
- ↓short-chain FA and SFA, ↑long-chain FA, MUFA and PUFA

Aim

To evaluate the effect of grass silage of different harvest times with or without rapeseed supplementation on fatty acid, carotenoid and tocopherol content in milk of Jersey cattle

Hypotheses

- Autumn grass compared with spring grass:
- less fibre & more FA →lower biohydrogenation and higher UFA in milk
- \uparrow leaves, \uparrow carotenoids in silage and milk

- Supplementation with rapeseed:
- increased linolenic content in milk
- increased level of α -tocopherol in milk

Material and Methods

- 36 Jersey cows
- 4 treatments in a 4 X 4 Latin square design
- 4 periods of 3 weeks
- Grass silage: mixture of red and white clover & perennial ryegrass
- Diets:
- SGS-R0 = spring grass silage without rapeseed
- SGS-RI = spring grass silage with rapeseed
- AGS-R0 = autumn grass silage (3rd and 4th regrowth) without rapeseed
- AGS-RI = autumn grass silage (3rd and 4th regrowth) with rapeseed

Formulation of diets (% of DM)

	·	Treatm	ients⊺		
Mixed ration	SGS-R0	SGS-R1	AGS-R0	AGS-R1	
SGS [‡]	66.0	63.7			
AGS 3 rd regrowth [‡]			33.0	32.0	
AGS 4 th regrowth [‡]			33.0	32.0	
Barley	18.0	17.3	18.0	17.3	
Rapeseed		7.0		7.0	
Rapeseed meal	9.0	5.2	9.0	5.2	
Beet pellets	6.0	6.0	6.0	6.0	
Feeding salt	0.2	0.2	0.2	0.2	
Mineral mix	0.9	0.9	0.9	0.9	
Expected intake (kg					
DM/day)					
Mixed ration	19.2	20.0	19.2	20.0	
Concentrate in AMS [§]	2.5	2.5	2.5	2.5	

Results

	SGS-R0	SGS-RI	AGS-R0	AGS-RI
DMI (kg)	16.7	16.6	16.7	16.9
ECM	28.9	28.8	28.6	28.7
Crude fat (g/kg DM)	38	64	38	64
Crude protein	185	181	209	204
NDF	308	302	282	277

ECM was affected by feeding treatments

DMI: dry matter intake ECM: energy corrected milk NDF: neutral detergent fibre

FA composition of feed (g/kg of DM)

	Rapeseed	SGS	AGS (3 rd +4 th regrowth)
C16:0	20.7	4.0	4.65
C18:0	7.3	0.4	0.5
C18:1 <i>ci</i> s9	253.4	0.4	0.5
C18:2n6	92.1	3.8	4.4
C18:3n3	52.7	18.7	24.4

✓ Rapeseed: higher oleic content

 \checkmark AGS: highest FA composition than SGS

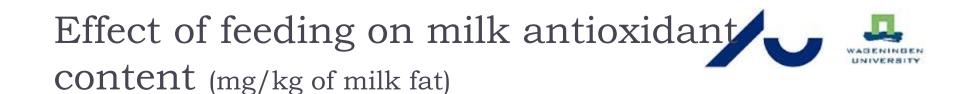
Effect of feeding on milk FA composition (g/kg of FA)

Treatments												
	G	iS	F	र	P-value							
	S	А	0	I	GS	R						
C12:0	42.8 ± 0.7	41.8 ± 0.7	45.3 ± 0.7	39.3 ± 0.7	0.162	<0.001						
CI4:0	107.4 ± 1.2	107.4 ± 1.2	111.0 ± 1.2	103.8 ± 1.2	0.988	<0.001						
C16:0	311.2 ± 3.8	295.9 ± 3.6	327.4 ± 3.7	279.7 ± 3.7	<0.001	<0.001						
C18:0	112.3 ± 1.8	115.7 ± 1.7	94.9 ± 1.7	133.0 ± 1.7	0.141	<0.001						
C18:1 <i>cis</i> 9	168.7 ± 3.3	180.4 ± 3.2	160.9 ± 3.2	188.2 ± 3.2	0.001	<0.001						
C18:2n6	13.9 ± 0.2	14.5 ± 0.2	14.5 ± 0.2	13.9 ± 0.2	0.033	0.029						
C18:3n3	7.8 ± 0.1	9.3 ± 0.1	8.6 ± 0.1	8.6 ± 0.1	<0.001	0.972						
CLAcis9trans I I	5.7 ± 0.2	5.2 ± 0.2	5.5 ± 0.2	5.5 ± 0.2	0.128	0.983						
► 14 Note: re	esults are mean ± sta	Indard error of mea	an EAA	NP 2014		14 Note: results are mean ± standard error of mean EAAP 2014						

FA recovery from feed to milk (g/g)

Treatments						
	GS		R		P-value	
	S	А	0	Ι	GS	R
C16:0	4.38 ± 0.09	3.82 ± 0.09	4.39 ± 0.09	3.82 ± 0.09	<0.001	<0.001
C18:2n6	0.11 ± 0.03	0.11 ± 0.03	0.11 ± 0.03	0.11 ± 0.03	0.49	0.81
C18:3n3	0.04 ± 0.02	0.05 ± 0.01	0.04 ± 0.02	0.05 ± 0.02	0.001	0.57

- •AGS and rapeseed in the diet:
- ✓ Higher recovery of C18:3n3
- \checkmark Lower *de novo* synthesis of CI6:0



	Rapeseed	SGS	AGS (3 rd +4 th regrowth)
α-tocopherol	56.2	91.2	54.7
γ-tocopherol	23.3	21.4	21.85
Lutein	6.4	334.4	386.8
Zeaxanthin		99.7	129.0
β-carotene	0.8	268.2	249.I

AGS compared to SGS:
✓ Lower α-tocopherol
✓ Higher carotenoids

Treatments						
	GS R			R	P-\	value
	S	А	0	Ι	GS	R
α-tocopherol	31.74 ± 1.12	28.69 ± 1.08	28.80 ± 1.11	31.63 ± 1.10	0.007	0.012
β-carotene	22.02 ± 1.13	24.38 ± 1.15	24.57 ± 1.13	21.83 ± 1.12	0.003	<0.001

•AGS: ✓Lower α-tocopherol ✓Higher β-carotene

•Rapeseed:
✓ Higher α-tocopherol
✓ Lower β-carotene

Discussion

FA content of grass silage of different cuts

Earlier findings:

Study	Cutting dates	Autumn VS Summer grass
This study	May, September, October	↑ CI6:0, CI8:0, CI8:I, CI8:2, CI8:3
Dewhurst et al. 2001	July, October	↑ CI6:0, CI8:I, CI8:2, CI8:3
Elgersma et al. 2003	June, September	↑CI6:0, CI8:2 ↓CI8:I, CI8:3

✓ Similar results with Dewhurst et al. (2001)
✓ In contrast with the results of Elgersma et al. (2003)

Antioxidant content of grass silage

Earlier findings (in mg/kg DM):

Study	β-carotene	Lutein	α-tocopherol
This study	172 - 326	334 - 395	24 - 91
Larsen et al. 2012	150	509	28
Elgersma et al. 2013	48	195	39

 \checkmark Similar results with Larsen *et al.* (2012)

✓ Differences with results of Elgersma et al. (2013)

 \checkmark Difference in studies:

-fresh grass with white clover

-method of determination (?)

Recovery of FA

- Larsen et al. (2012): ↓ recoveries of C18:2n6 and C18:3n3 when these fatty acids ↑
- Present study:
 recovery of CI8:3n3 with rapesed
 - Higher inclusion of oilseeds leads to lower biohydrogenation rate
- C18:3n3 from linseed and grass silage VS from rapeseed and grass silage

Conclusions

- AGS and rapeseed:
- \downarrow CI6:0 in milk
- ↑ C18:0, C18:1*cis*9, C18:2*n*6, C18:3*n*3 in milk
- ↓ biohydrogenation rate of C18:3n3
- $\uparrow \alpha$ -tocopherol & β -carotene in milk

Conclusions (2)

manipulation of the forage harvest time and oilseed inclusion can alter milk composition

- enhance MUFA and PUFA concentrations in milk
- positively affect the oxidative stability of milk and improve nutritional quality of milk

Contact:

stefania.vogdanou@hotmail.com